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ABSTRACT

In this paper, we propose a new single shot method for
multi-person 3D pose estimation, from monocular RGB im-
ages. Our model jointly learns to locate the human joints
in the image, to estimate their 3D coordinates and to group
these predictions into full human skeletons. Our approach
leverages and extends the Stacked Hourglass Network and
its multi-scale feature learning to manage multi-person sit-
uations. Thus, we exploit the Occlusions Robust Pose Maps
(ORPM) to fully describe several 3D human poses even in
case of strong occlusions or cropping. Then, joint grouping
and human pose estimation for an arbitrary number of peo-
ple are performed using associative embedding. We evaluate
our method on the challenging CMU Panoptic dataset, and
demonstrate that it achieves better results than the state of the
art.

Index Terms— multi-person, 3D, human, pose, estima-
tion.

1. INTRODUCTION

3D human pose estimation based on RGB images is a chal-
lenging task from the computer vision perspective. Most of
the 3D pose estimation methods are restricted to a single fully
visible subject. In real-world scenarios, multiple people inter-
act in cluttered or even crowded scenes containing both self-
occlusions of the body and strong inter-person occlusions.
Therefore, inferring the 3D pose of all the subjects (without
knowing in advance their number) from a single and monoc-
ular RGB image is a harder problem and recent single-person
3D human pose estimation methods fail in this case.

In the present article, we propose a new bottom-up ap-
proach that manages the whole scene in a single forward pass
to give multi-person 3D human pose estimates. This allows to
manage occlusions between people and to take advantage of
context-related information to predict the different poses. Our
method is based on the Stacked Hourglass architecture [1] that
has demonstrated its effectiveness for 2D human pose estima-
tion. Single shot multi-person 3D human pose estimation is
challenging as it needs to properly locate human joints and
to regroup these estimations into final 3D skeletons. By as-

sociating the Hourglass architecture with a powerful joints
grouping method named the associative embedding [2] and
a robust multi-person 3D pose description [3], we design an
end-to-end architecture that jointly performs 2D human joints
detection, joints grouping and 3D human pose estimation.
We trained the model on a large scale dataset with real and
complex human interactions and occlusions. The proposed
method surpasses state of the art results on the CMU-Panoptic
[4] dataset.

2. RELATED WORK

Human pose estimation is more and more studied as it is
very useful for many applications (e.g., activity recogni-
tion, robotics vision, etc.). In this section, we present recent
deep learning approaches for 2D human pose estimation and
single/multi-person 3D human pose estimation.

2D human pose estimation: Among the CNN based ar-
chitectures proposed for single-person 2D human pose es-
timation [1, 5, 6], the Stacked Hourglass networks [1] are
widely used as they process features across scales and effi-
ciently capture spatial relationships between joints. Further-
more, its stacked architecture allows successive refinements
of the pose estimates.

Both top-down and bottom-up human approaches have
been proposed for multi-person 2D human pose estimation.
Top down methods [7, 8] first detect human bounding boxes
and then estimate 2D human poses. Nevertheless, these meth-
ods fail when the detector fails, in particular when there are
strong occlusions. Bottom-up approaches [9, 2] first estimate
the 2D location of each joint and then associate them into full
skeletons. Unlike the part affinity fields [9] that need com-
plex post-processing to group joint, Newell et al. [2] propose
to learn this association in an end-to-end network thanks to
the Associative Embedings.

Single-person 3D human pose estimation: Some exist-
ing approaches [10, 11] use only 2D human poses estimated
by other methods [1, 9] to predict 3D human poses. These
approaches do not take into account important images clues,
such as contextual information, to make the prediction. Other
methods [12, 13, 14] directly predict 3D human poses from
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Fig. 1: The proposed model estimates full 3D skeletons for an arbitrary number of people. It predicts, for each joint, a 2D
localisation map(heatmap), an associative embedding map and 3 ORPM. The associative embeddings maps contain different
embedding values for joints belonging to different subjects. The ORPM store the 3D joints coordinates at different 2D locations.

images. The learning procedure needs images annotated with
3D ground-truth pose. Since no large scale 3D in the wild
annotated dataset exists, current approaches tend to overfit on
the constrained environment they have been trained on. The
existing in the wild approaches use either synthetic data [15]
or are trained on both the 3D and the in the wild 2D datasets
[3, 16, 17, 18] by multi-modal 3d human pose supervision [3]
or by using geometric constraints [16], ordinal depth supervi-
sion [17] or an adversarial loss [18].

Multi-person 3D human pose estimation: In a top-down
approach, Rogez et al. [19] generates human pose proposals
that are further refined using a regressor. This approach per-
forms many redundant estimations that need to be fused and
scales badly for a large number of people. Zanfir et al. [20]
estimate the 3D human shape from sequences of frames using
a pipeline process followed by a 3D pose refinement based on
a non-linear optimisation process and semantic constraints.
MubyNet [21] is a bottom-up multi-task network that iden-
tifies joints and learns to score their possible associations as
limbs. These scores are used to solve a global optimisation
problem that groups the joints into full skeletons following the
human kinematic tree. Mehta et al. [22] propose an approach
that predicts 2D heatmaps, part affinity fields [9] and Occlu-
sions Robust Pose Maps (ORPM). This approach manages
multi-person 3D human pose estimation even for occluded
and cropped people. Nevertheless, the architecture used in
[22] is not a stacked architecture while the stacking strategy
[9, 2] performs well in the 2D context.

The proposed method deals with multi-person 3D human
pose estimation. Unlike [20], it does not need sequence of
images to refine the pose estimates. It is based on the stacked
hourglass networks [1] devoted to mono-person 2D pose es-
timation and showing very good performance on this task.
Thus, we extend this approach using the multi-person 3D
poses description robust to occlusions proposed in [22] and
the associative embedding [2] that groups joints in skeletons

in a more effective way that part affinity fields [9] proposed
in a 2D context. The final network architecture is notably
trained in an end-to-end manner and the inference requires a
single forward pass.

3. PROPOSED METHOD

3.1. Description

Given a monocular RGB image I of size W × H, we seek
to estimate the 3D human poses P = {Pi | i ∈ [1, . . . , N ]}
where N is the number of visible people, Pi ∈ R3×K are the
3D joints locations and K is the number of predicted joints.
The 3D joint coordinates are expressed relatively to their par-
ents joints in the kinematic tree and converted to pelvis rela-
tive locations for evaluation in a 3D coordinate frame oriented
like the camera frame. The model is composed of several
stacked hourglass networks. The image is first sub-sampled
to images features I ′ of size W ′ × H ′ by convolutions and
pooling layers. Each hourglass module outputs heatmaps for
2D joints detection, ORPM for 3D joint localisation and asso-
ciative embeddings maps for joint grouping, each map being
of size W ′ × H ′. Except for the first hourglass that takes as
input only image features, each hourglass takes as input im-
ages features and the prediction of the previous hourglass that
is refined. Fig. 1 depicts an overview of the proposed method.

3.2. Occlusions Robust Pose Maps

A 3D location map allows to store 3D coordinates of a joint
in its 2D corresponding position. For each joint, three loca-
tion maps (one for each coordinate X,Y, Z) as well as 2D
heatmaps encoding 2D position in the form of confidence
maps are predicted. In a basic 3D location map like the one
used in [13], the 3D joint position is obtained in its 2D corre-
sponding position in the map. However, this formulation sup-
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poses that all the articulations are visible and is not adapted in
case of strong occlusions. Furthermore, if a person is cropped
and some of its joints are not visible, it is then impossible to
predict their 3D positions even if they can be deduced from
the global person posture. To manage these cases, the Occlu-
sions Robust Pose Maps (ORPM) add redundancy and use the
concept of valid read-out location. A 2D readout position of a
joint is considered valid if the joint is not cropped, if the con-
fidence score associated to the 2D predicted position of this
joint is high, and if this joint is not too close to another joint
in the image. Thus, the 3D location of a joint can be read in
the following 2D positions of the corresponding ORPM:
• At the 2D predicted position itself. For instance, the

elbow 3D coordinates are read from the elbow 2D po-
sition in the ORPM.

• At the 2D position of another joint of the limb if the 2D
joint position is not a valid readout location. We start
from the extremity of the limb and we go back in the
kinematic tree until we found a valid readout position
in the limb. For example, the wrist coordinates can be
read at the 2D positions of the elbow or the shoulder.

• At the neck or the pelvis predicted 2D positions if the
joints belonging to the limb are also not valid read-out
locations. Thus, the 3D person skeleton can be obtained
entirely at the 2D predicted positions of the neck and
the pelvis. These two joints have been chosen because
they are the most easily detected and the less prone to
occlusions.

If the 2D positions of the pelvis and the neck are not
valid read-out locations and if the person is detected in the
2D heatmaps, the model predicts the mean 3D position of the
joint in the training dataset.

3.3. Associative embedding

The network predicts for each joint a 2D heatmap and 3
ORMP for each X,Y, Z joint coordinates. This description
is independent of the number of people. Now, we use the
associative embedding to associate the joint to full skeletons.
Predicted heatmaps contain peaks at the 2D joint positions
of different subjects. To regroup the joints belonging to the
same person, an additional output is added to the network
for each joint corresponding to embeddings. Detections are
then grouped by comparing the embedding values of differ-
ent joints at each 2D peak position in the heatmap. If two
joints have a close embedding value, they belong to the same
person. The network is trained to perform this grouping by
predicting close embeddings for joints belonging to the same
person and distant embeddings for joints of distinct people.

Formally, let Ek ∈ RW ′×H′
be an embedding map pre-

dicted by the network for the kth joint and ek(x) be the em-
bedding value at the 2D position x. Let us consider an image
composed ofN people, each havingK joints. Let xk,n be the
2D ground-truth position of the kth joint of the person n. We
refer by reference embedding, the predicted embedding of a

person obtained as the mean of its embedding’s joints:

en =
1

K

∑
k

ek(xk,n) (1)

The grouping loss is then defined by:

(2)

LAE(e) =
1

NK

∑
n

∑
k

(en − ek(xk,n))2

+
1

N2

∑
n

∑
n′ 6=n

exp

(
− 1

2σ2
(en − en′)2

)
The first term of equation (2) corresponds to a pull loss

that brings similar embeddings for joints belonging to a same
person and the second part corresponds to a push loss that
gives different embeddings to joints of different subjects. σ is
a parameter giving more or less importance to the push loss.

3.4. Network loss

We learn jointly the three following tasks: i) 2D joint local-
isation by predicting heatmaps; ii) 3D joint coordinates esti-
mation with ORPM prediction; iii) Joint grouping with asso-
ciative embedding prediction. The network loss is then:

L3DMP = λ2D L2D + λORPM LORPM + λAE LAE (3)

Where L2D is the euclidean distance between the ground-
truth 2D heatmaps and the predicted 2D heatmaps, LORPM is
the euclidean distance between the predicted ORMP and the
ground-truth ORMP and LAE is the loss defined by equation
(2). And the λ’s are the weights of the respective sub-losses.

3.5. Final prediction

Once the network is trained, the final prediction is obtained in
several stages. First, a non-maximum suppression is applied
on the heatmaps to obtain the set of joint detections. Then, all
the neck embeddings are read from the neck embedding map
at the predicted neck 2D positions. This pool of 2D neck po-
sitions with their corresponding embedding gives the initial
set of detected people. The other joints associated to these
necks need now to be found. Each person is characterised by
its reference embedding. The next joint associated to a given
person is the one having the highest detection score and hav-
ing a distance with the person embedding lower than a given
threshold. We repeat this step until there is no more joint that
respects this two criteria. Once this process is done, the non-
associated joints are used to create a new pool of people. At
the end, the 2D pose of each person is obtained and used to
read the 3D pose in the ORPM as described in Section 3.2.

4. EXPERIMENTS

Datasets: We provide quantitative results on the CMU Panop-
tic [4] and Human 3.6M [23] datasets. CMU Panoptic [4] is
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a dataset containing images with several people performing
different scenarios (playing an instrument, dancing, etc.) in a
dome where several cameras are placed. This dataset is chal-
lenging because of complex interactions and difficult camera
viewpoints. We evaluate our model following the same pro-
tocol than [20, 21], that is on 9600 frames from HD cameras
16 and 30 and for 4 scenarios: Haggling, Mafia, Ultimatum,
Pizza. We train the model on the other 28 HD cameras of this
dataset. Human 3.6M [23] is a dataset containing 3.6 million
single-person RGB images with 3D human poses annotated
by MoCap systems. We used the standard protocol for the
evaluation. We used the S1, S5, S6, S7 and S8 subjects for
training and the subjects S9 and S11 for testing.

Training Procedure: The method was implemented with
PyTorch. The hourglass component is based on the public
code in [2]. We used four stacked hourglasses in our model,
each one outputting 2D heatmaps, ORPM and associative
embeddings. We trained the model using mini-batches of
size 30 on 8 Nvidia Titan X GPU during 240k iterations.
The whole training procedure took about five days. We used
the Adam[24] optimiser with an initial learning rate of 10−4

decreased to 10−5 at the 70000th iteration, to 10−6 at the
200000th and to 10−7 at the 220000th.

Multi-person 3D human pose estimation results: Ta-
ble 1 provides results of our method on the CMU-Panoptic
dataset for the Haggling, Mafia, Ultimatum and Pizza scenar-
ios. Firstly, we present the results obtained by stacking one,
two or three hourglass modules. Each time an hourglass mod-
ule is added, the Mean per Joint Position Error (MPJPE) de-
creases (from 91.8 mm for one hourglass module to 68.5 mm
for our full four hourglass modules model). This shows the
importance of the stacking scheme and the refinement pro-
cess in the model architecture. The penultimate line of this
table shows the results obtained with four hourglass modules
and a Naive Readout (NR) in the ORPM, that means when
the 3D joint coordinates are read directly from their 2D posi-
tions. Because of frequent crops and occlusions in the panop-
tic dataset, this model has poor performance with an MPJPE
of 118.8 mm. This proves the importance of the ORPM stor-
age redundancy to manage occlusion. Our final model (last
row), with four hourglass modules and the readout procedure
described in Section 3.2 improves the results over the recent
state of the art methods. Note that unlike [20] we do not learn
on any frame from the cameras 16 and 30 and on any external
data. Actually, the proposed model does not need a trained at-
tention readout process thanks to the effective ORPM readout
process.

Single-person 3D human pose estimation results : Ta-
ble 2 provides results of our method on the Human 3.6M
dataset. While designed for multi-person 3D human pose es-
timation, our model produces reliable results in a single per-
son setting with an MPJPE of 66.4 mm on the Human 3.6M
dataset, better than most compared approaches. In particular,
it has a lower error than [22] that also uses ORPM but differs

Method Haggling Mafia Ultimatum Pizza Mean

[14] 217.9 187.3 193.6 221.3 203.4
[20] 140.0 165.9 150.7 156.0 153.4
[21] 72.4 78.8 66.8 94.3 72.1

Ours, 1-HG 92.3 86.1 82.7 103.8 91.8
Ours, 2-HG 77.1 74.8 68.0 89.8 78.3
Ours, 3-HG 72.4 72.4 60.12 85.2 73.8
Ours, NR 101.5 124.2 105.7 130.3 118.8
Ours, full 70.1 66.6 55.6 78.4 68.5

Table 1: Mean per joint position error (MPJPE) in mm on the
Panoptic Dataset. (i-HG stands for i stacked hourglasses).

Direction Discussion Eating Greet Phone Photo Pose Purchase

[11] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7
[12] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3
[16] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6
[10] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1
[13] 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8
[3] 52.5 63.8 55.4 62.3 71.8 79.8 52.6 72.2
[19] 76.2 80.2 75.8 83.3 92.2 79.9 105.7 71.7
[22] 58.2 67.3 61.2 65.7 75.82 84.5 62.2 64.6

Ours 50.1 66.4 56.4 65.0 69.4 81.5 55.6 52.1
Sitting SittingD Smoke Wait WalkD Walk WalkT AVG

[11] 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
[12] 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
[16] 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9
[10] 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
[13] 106.6 138.7 93.8 73.9 82.0 55.8 59.6 80.5
[3] 86.2 120.6 66.0 64.0 76.8 48.9 53.7 68.6
[19] 105.9 127.1 88.0 83.7 86.6 64.9 84.0 87.7
[22] 82.0 93.0 68.8 65.1 72.0 57.6 63.6 69.9

Ours 83.8 115.4 62.7 64.4 78.1 48.0 53.1 66.4

Table 2: Mean per joint position error (MPJPE) in mm on the
Human3.6M dataset.

in the architecture used and in the joint grouping method.

5. CONCLUSION

We have presented a single shot trainable model for multi-
person 3D human pose estimation in various camera view-
point conditions, strong occlusions and various social activi-
ties. 2D and 3D human joints are predicted using heatmaps
and ORPM which have proven their ability to manage occlu-
sions. The difficult problem of associating joints to people
skeletons is managed using the recent associative embed-
dings method. The same stacked network jointly learns and
estimates, in an end-to-end manner, 2D human poses and
3D human poses exploiting the complementarity of these
tasks. The provided experiments in this work have proven the
importance of the stacking scheme and the ORMP formula-
tion, validating the proposed network architecture. Further-
more, large-scale experiments, on the CMU Panoptic dataset,
demonstrate that the proposed approach results surpass those
of the state of the art.
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