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Abstract Hippocampal offline reactivations during reward-based learning, usu-
ally categorized as replay events, have been found to be important for performance
improvement over time and for memory consolidation. Recent computational work
has linked these phenomena to the need to transform reward information into state-
action values for decision-making and to propagate it to all relevant states of the
environment. Nevertheless, it is still unclear whether an integrated reinforcement
learning mechanism could account for the variety of awake hippocampal reacti-
vations, including variety in order (forward and reverse reactivated trajectories)
and variety in the location where they occur (reward site or decision-point). Here
we present a model-based bidirectional search model which accounts for a variety
of hippocampal reactivations. The model combines forward trajectory sampling
from current position and backward sampling through prioritized sweeping from
states associated with large reward prediction errors until the two trajectories
connect. This is repeated until stabilization of state-action values (convergence),
which could explain why hippocampal reactivations drastically diminish when the
animal’s performance stabilizes. Simulations in a multiple T-maze task show that
forward reactivations are prominently found at decision-points while backward
reactivations are exclusively generated at reward sites. Finally, the model can gen-
erate imaginary trajectories that are not allowed to the agent during task perfor-
mance. We raise some experimental predictions and implications for future studies
of the role of the hippocampo-prefronto-striatal network in learning.
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1 Introduction

The hippocampus contains place cells that encode the position of a rodent dur-
ing active navigation (O’Keefe and Dostrovsky, 1971), by integrating exteroceptive
and interoceptive sensory information. These cells also activate while the animal is
passive, this has first been shown during sleep (Wilson and McNaughton, 1994; Lee
and Wilson, 2002), and later during awake immobility (Foster and Wilson, 2006).
These offline reactivations often appear to lack specific temporal organization, but
a non negligible proportion of them correspond to sequences of places that have
been previously visited (played in a forward or backward manner). In experimental
settings where the animal is allowed to circulate in alleys in one direction only (for
example on linear tracks, or in the looped mazed used by (Gupta et al., 2010) and
that we simulate in this article, forward reactivations are defined as sequences of
place cell activations that follow the same order as what was experienced, while
backward reactivations correspond to sequences of place cells that were experi-
enced in the reverse order (Fig. 1) (Foster and Wilson, 2006; Diba and Buzsáki,
2007). Some of these offline reactivations even correspond to so-called imaginary
sequences (Gupta et al., 2010), e.g. the concatenation of two experienced sequences
that share their respective last and first place cell, but that have never been expe-
rienced successively. These offline reactivations are compatible with longstanding
memory consolidation theories (Buzsáki, 1989), which proposed that labile memo-
ries accumulated during daytime would be stabilized by nighttime replays, as has
recently been shown in a causal manner (Maingret et al., 2016). It has however
also been shown that they probably play a role in reinforcement learning, as dis-
rupting sleep reactivations decreases learning speed (Girardeau et al., 2009) and
stimulating the reward system during sleep reactivations creates place preference
associations (de Lavilléon et al., 2015). Besides, awake hippocampal reactivations
are classically associated to deliberation, possibly reflecting planning mechanisms
to guide future behavior (Johnson et al., 2007; Pfeiffer and Foster, 2013). This
multiplicity of roles has been reviewed in details in (Ólafsdóttir et al., 2018).

From a computational perspective, the reinforcement learning framework might
be particularly suited to account for these hippocampal reactivations (Johnson
and Redish, 2005; van der Meer et al., 2012; Khamassi and Humphries, 2012;
Pezzulo et al., 2013; Foster, 2017; Cazé et al., 2018; Mattar and Daw, 2018). Var-
ious flavors of reinforcement learning algorithms have been successful at modeling
animal behavior as well as providing a framework to explain neurophysiological
data underlying the interactions between prefrontal cortex, basal ganglia, hip-
pocampus and midbrain dopaminergic nuclei (Barto, 1995; Schultz et al., 1997;
Guazzelli et al., 1998; Arleo and Gerstner, 2000; Foster et al., 2000; Daw et al.,
2005; Khamassi and Humphries, 2012). In a recent review, we examined which
of these algorithms could make use of offline activations of place representations
(Cazé et al., 2018), and therefore would be potential candidates to explain the
reinforcement learning-related hippocampal place-cell replay events. We stressed
on the fact that experimentally observed ”replays” may indeed sometimes corre-
spond to the replay of the stored memory of a sequence of episodes, but could also
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Fig. 1 Taxonomy of different orders of sequences of states (i.e. locations) mentally reacti-
vated during 6 consecutive timesteps while an agent (here artificial) is immobile in a maze.
The depicted maze is a simplified version of the multiple T-maze task of Gupta et al. (2010).
The reactivated states were here generated through model simulations. Forward sequences
correspond to the same order as what the agent usually performs while moving. Backward
sequences correspond to the reverse order. Unordered sequences correspond to what a hu-
man experimenter could classify as random or noise. Imaginary sequences correspond to the
concatenation of two trajectories whose combination has never been performed by the agent
during task performance, and which may thus not be considered as a simple replay of past
experience (Gupta et al., 2010).

sometimes be generated by the simulation of the effect of a series of actions given
a starting point, through a sort of mental traveling using an internal model of
the world. These two types of computational reactivations, model-free (MF) and
model-based (MB), are difficult to separate experimentally, while both make sense
from an algorithmic point of view. It has recently been proposed that despite their
different mechanisms (i.e., model sampling versus replay of past experience), both
types of reactivations may have the common goal to propagate reward information
to all relevant states of the environment in order to learn and stabilize optimal
state-action values (Pezzulo et al., 2017; Cazé et al., 2018; Mattar and Daw, 2018).

Among the different families of algorithms reviewed by (Cazé et al., 2018), the
most promising ones to account for hippocampal awake replays were identified as
the MB and the Dyna ones, especially the variants using trajectory sampling or
bidirectional search as heuristics to get the most out of a limited offline activation
budget. It has moreover been shown that the prioritzed sweeping heuristic alone
in a Dyna algorithm (Moore and Atkeson, 1993; Peng and Williams, 1993) can
generate awake reactivations that look like hippocampal backward replays, but
is nevertheless not sufficient to explain forward and imaginary offline activations
(Aubin et al., 2018). Besides, MF algorithms may be more suitable to account for
hippocampal sleep replays because they reactivate recent experience in episodic
memory rather than generating potential action plans for upcoming behavior. In
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parallel, Mattar and Daw (2018) proposed a variant to the Dyna algorithm with an
additional component akin to trajectory sampling, thus extending the explainable
phenomena. Nevertheless, while their model offers a normative perspective to ex-
plain why hippocampal reactivations are useful in terms of reward maximization,
it suffers from some limitations such as unrealistic computation requirements, and
agent omniscience about reward availability within the environment.

In the present work, we explore how a novel bidirectional search method under
budget constraints can be implemented in the inference step of a model-based al-
gorithm, by combining prioritized sweeping and trajectory sampling. We show that
in a navigation context, the combination of these two search heuristics can reduce
the computational cost. It moreover appears that it can be advantageous to use
different exploration/exploitation trade-off parameter values for the online and the
offline action selection steps, depending on whether performance or computational
cost is to be optimized. The evolution of the amount of reactivations generated
by the model during task learning is compatible with animal experimental data.
Moreover, reactivations are generated preferentially at decision points and reward
sites, and exhibit forward, backward and imaginary sequences, consistent with
neurophysiological recordings.

2 Model description

Our current proposal is set in a standard Markov decision problem setting, where
an agent visits discrete states s ∈ S, using a finite set of discrete actions a ∈ A.
States represent here unique locations in space, equally spaced on a square grid,
an information expected to be provided by place cell activity in the hippocampus.
The model proposed here can be generalized to more continuous representations
of space and actions, but the discrete case was kept for the sake of simplicity.

The family of reinforcement learning algorithms based on an internal model of
the world learns a model of the transition probabilities between states, T (s, a, s′),
and of the rewards R(s, a). They use it to infer the value of the actions in each state
by propagating the reward information in the whole transition graph. This prop-
agation can be a computationally costly process, when all (s, a) are to be visited
multiple times before accurate value estimation. Heuristics have been proposed
to improve the inference cost (Sutton and Barto, 1998): prioritized sweeping pro-
poses to visit the states starting from those whose value has changed recently, and
then to their predecessors, the predecessors of their predecessors, and so on (Peng
and Williams, 1993; Moore and Atkeson, 1993); trajectory sampling proposes to
generate continuous trajectories from the current position until reward is reached
(Barto et al., 1995), with the idea that it will favor the update of relevant states
(avoiding wasting resources on states that have a very low probability of being
visited). As we highlighted in (Cazé et al., 2018), these two can be associated in a
bidirectional search process inspired by bidirectional planning approaches (Pohl,
1971). We thus propose here an implementation of a model-based algorithm which
alternates prioritized sweeping and trajectory sampling phases to infer state-action
values Q(s, a) (i.e. to perform valuation, in terms borrowed from the neuroscience
decision-making field), see Fig. 2.

The online part of the algorithm (Algo. 1) is quite classical: in the current state
s, the agent selects the next action from a probability distribution over actions in
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state s computed from the Q-values with a softmax function:

P (a|s) =
eβQ(s,a)∑
i∈A e

βQ(s,i)
(1)

where β is called the inverse temperature which regulates the exploration/exploita-
tion trade-off by modulating the level of stochasticity of choice: the closer β is to
zero, the more the contrast between Q-values will be attenuated, the extreme
being for β = 0 which produces a flat action probability distribution (random
exploration); in contrast, the larger the value of β, the more the contrast between
Q-values will be enhanced, which makes the probability of the action with the
highest Q-value close to 1 when β tends towards ∞ (exploitation).

Then, given the observed reward r (which in the present simulations will be
equal to 1 in a single rewarding state of the environment representing the current
reward location, and 0 elsewhere) and the new state s′ reached by the agent after
performing action a, the world model is updated and then the Q-value Q(s, a) is
updated with the updated model in a model-based manner. For the update of the
world model, we use a very basic statistical approach for the transition function
T which consists in simply counting how many times (s, a) was followed by s′

normalized by the total number of times (s, a) was encountered. This method is
fine when the structure of the environment is stable (which is always the case in
the present simulations), and could be extended in cases where the simulations
involve the introduction of obstacles or of other changes of maze configuration.
Besides, updating the reward function R in the world model is here based on the
latest feedback only, which works fine in the tasks involving a deterministic reward
studied here. For the Q-value update, we perform one step of the value iteration
algorithm (Sutton and Barto, 1998):

Q(s, a)← R(s, a) + γ
∑
s′

T (s, a, s′)maxk∈AQ(s′, k) (2)

It is worthy of note that this equation works in the general case where transition
between states of the task are stochastic (probabilistic). In that case, for a given
action a performed in a state s, the transition function T is a probability distribu-
tion over all possible states of the task. However, in the simulations presented in
this paper, the world is deterministic (i.e. navigation in a maze), so that a given
state-action couple always leads to the same resulting state s′ with probability 1,
while the probability is 0 for all other states. Nevertheless, we keep this formulation
for generality purposes.s

After this step, we measure how much the absolute value of the Q-value has
been changed according to:

δ = |Qt+1(s, a)−Qt(s, a)| (3)

If δ is large (which means the outcome of action a in state s has been surpris-
ing), the agent has good reasons to think that updating the Q-values of neighboring
states will also result in important value changes. Thus, following Moore and Atke-
son (1993); Peng and Williams (1993), if δ is higher than a certain threshold, all
possible predecessors of the current state are added to a priority queue PQueue
(that will be used during the prioritized sweeping), with a priority equal to δ,
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attenuated by γ (the value cost of one step) and by the probability to effectively
reach state s from the predecessor under consideration.

Following classical machine learning work (Lin, 1992; Peng and Williams,
1993), after each action performed by the agent in the environment, an offline
reactivation phase starts, which in our algorithm corresponds to a series of itera-
tions of a bidirectional search inference process with the world model (Fig. 2). This
offline reactivation phase thus corresponds to hippocampal awake replays only, and
is described in Algo. 2. Updates of Q-values can in principle be unordered, though
it is more efficient to start from rewarding (s, a) combinations, and progressively
propagate their value to their predecessors first. This leads to the more general
idea of prioritized sweeping : update first the observations whose value has changed
recently and has been associated with a high level of surprise, and propagate that
surprise to their predecessors. This is thus a dynamic programming equivalent of
backward search. The level of surprise δ is computed with Eqn. 3. Because the
predecessors of a given state s can be difficult to determine in a stochastic world,
Moore and Atkeson (1993) propose to consider as predecessors all the states s′

which have, at least once in the history of the system, been followed by a one-step
transition s′ → s through an action a′. Thus the priority associated to a prede-
cessor s′ shall be weighted by the probability of transition T (s′, a′, s) between s
and s′. As we are propagating the surprise observed in state s to its predecessors,
the priority is attenuated by the discount factor γ. To sum up, for each predeces-
sor s′, we compute the Q-value variation δ′ that would result from updating the
Q(s′, a′) based on the recently changed Q-value of s. As a result, the final priority
considered by our model for each predecessor s′ is: γT (s′, a′, s)δ′.

We then use the opposite optimization: rather than trying to update values
for all observations, most of which are not going to be visited, concentrate on
the current situation by updating the values starting from the current observation
(i.e., the current estimated position of the animal within the environment) and
considering its successors (a strategy called trajectory sampling (Sutton and Barto,
1998)). This process is similar to the computation of the need to update each
state’s value depending on the probability to visit it in the near future, which
Mattar and Daw (2018) compute through the use of the Successor Representation
(SR) (Stachenfeld et al., 2017). While the SR provides less flexibility than pure
MB techniques, it can capture additional properties of the hippocampal system
and has in common to the trajectory sampling method used here to produce a sort
of mental traveling through forward sweeps from the current position until possible
future states. Nevertheless, one key question with these techniques is when to stop
the current sequence of actions that is sampled during this mental traveling. Taking
inspiration from the bidirectional planning classical technique (Pohl, 1971; Levy,
1996), we sample actions forward until reaching a state that has previously been
reached by the backward prioritized sweeping process: we stop model-based mental
traveling when forward and backward search process have reached a connection
state (Fig. 2).

To be more precise, each inference iteration begins with a prioritized sweeping
phase: the element with the highest priority in PQueue is processed (using the
same update rule defined in Eqn. 2), and its predecessors are added to the queue
with the same rule as in the online phase, this processing of the queue stops either
when a given budget of nbPSmax cycles is consumed, or when the priority of
the first element in the queue is below ν. It is followed by a trajectory sampling
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phase: a sequence of actions is simulated using the world model, starting from
the current position, using the same update rule, until consumption of the budget
(nbTSmax cycles) or until the arrival in a state present in PQueue (i.e. whose
value has already been updated by prioritized sweeping). The whole process is
repeated until the sum of the modifications of the Q values processed falls under
a given threshold ε (a budget constraint could be added here, as proposed in Cazé
et al. (2018), but in this work we let the system reach this criterion).

Algorithm 1 Online algorithm

INPUT: s0, Q // initial state, Q-values
OUTPUT: Q // updated Q-values
nbActions← 0
st ← s0
PQueue ← {} // PQueue: empty priority queue
T ← 0 // T: transition statistics storage
R ← 0 // R: reward function
repeat
at ← draw(softmaxβ(Q(st))
nbActions← nbActions+ 1
Take action at receive st+1, rt+1

T (st, at, st+1)← T (st, at, st+1) + 1
R(st, at)← rt+1

Qold ← Q(st, at+1)
// 1-step MB update:

Q(st, at+1)← R(st, at+1) + γ
∑

s′
T (st,at+1,s

′)∑
i
T (st,at+1,i)

maxk∈AQ(s′, k)

δ = |Q(st−1, at+1)−Qold|
for each (s, a) so that T (s, a, st) 6= 0 do

p← δ × γ × T (s,a,st)∑
i
T (s,a,i)

if p > ν then
if (s, a) /∈ PQueue then

Put (s, a) in PQueue with priority p
else

Update priority of (s, a) in PQueue with p
end if

end if
end for
st ← st+1

Q← bidirectionalInference(Q,PQueue,st) // offline phase
until nbActions = nbActionsMax

We can anticipate from the defined algorithm that three different types of state
offline activations will be produced, depending on the situation:

– If the priority queue contains surprising-enough states (which happens most
of the time at reward location when an unexpected reward is obtained, or an
expected reward is missed), there is a (short) phase of prioritized sweeping,
which results in backward reactivations, followed by a (short) phase of trajec-
tory sampling. This is repeated until convergence of Q-values, before the agent
can make a new action and go to a new state.

– If the priority queue does not contain surprising states, there is a minimal
duration (i.e., the budgeted nbTSmax = 10 iterations) of trajectory sampling
performed just to see whether this results in big changes in Q-values, so that
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Fig. 2 Schematic representation of the operation of the bidirectional inference algorithm:
prioritized sweeping and trajectory sampling phases alternate until an inference stop criterion
is reached (Q-value convergence, exhaustion of a general budget, etc.). The mouse represents
the agent’s position, and R the reward location. We illustrate here the case where the total
reactivation budget is not unlimited, hence the initial state can contain surprising events
inhertited from the previous set of reactivations, rather than corresponding to the agent’s last
move only. Each prioritized sweeping phase stops either when budget is exhausted or when no
element in the priority queue has a priority above a fixed threshold. Each trajectory sampling
phase stops either when budget is exhausted or when the trajectory reaches a state stored in the
priority queue. Figure by Girard, B., available at https://doi.org/10.6084/m9.figshare.8306132
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Algorithm 2 Bidirectional inference algorithm (offline phase)

INPUT: Q, PQueue, st // Q-values, priority queue, current state in the real world
OUTPUT: Q // updated Q-values
nbLoops← 0
repeat
Sumδ ← 0
nbLoops← nbLoops+ 1
// budgeted prioritized sweeping:
nbPS ← 0
while priority(PQueue[0]) > ν and nbPS < nbPSmax do
nbPS ← nbPS + 1
(s, a)← PQueue[0] // item with the highest priority in the Queue
Qold ← Q(s, a)

Q(s, a)← R(s, a) + γ
∑

s′
T (s,a,s′)∑
i
T (s,a,i)

maxk∈AQ(s, k) // 1-step MB update

δ ← |Q(s, a)−Qold|
Sumδ ← Sumδ + δ
Update priority of (s, a) in PQueue with δ
for each (s′, a′) so that T (s′, a′, s) 6= 0 do

p← δ × γ × T (s,a,st)∑
i
T (s,a,i)

if p > ν then
if (s′, a′) /∈ PQueue then

Put (s′, a′) in PQueue with priority p
else

Update priority of (s′, a′) in PQueue with p
end if

end if
end for

end while
// budgeted trajectory sampling:
nbTS ← 0
s← st // start from the current location in the real world
// loop until a state of PQueue is reached or until budget expended
while s /∈ PQueue and nbTS < nbTSMax do
nbTS ← nbTS + 1
a← draw(softmaxβR (Q(s)))
s′ ← draw(probabilityProportionateSelection(T (s, a)))
Qold ← Q(s, a)

Q(s, a)← R(s, a) + γ
∑

s′
T (s,a,s′)∑
i
T (s,a,i)

maxk∈AQ(s, k) // 1-step MB update

Sumδ ← Sumδ + |Q(s, a)−Qold|
s← s′

end while
until Sumδ < ε or nbLoops > nbLoopsMax // no significant Q-value update in the last
loop or global budget exhausted

the algorithm determines whether a long trajectory sampling is required until
the Q-values converge. If Q-values are modified more than a certain threshold,
this means that Q-values have not yet converged and a series of (short) phases
of trajectory sampling are performed until Q-values converge.

– Finally, in the case where the priority queue does not contain surprising states
and the short trajectory sampling performed does not change Q-values more
than the ε threshold, then the algorithm considers that Q-values have already
converged and that inference can be stopped. In other words, this corresponds
to most cases after learning, where no surprising event occur, the performance
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Fig. 3 Example of Q-values learned by the model during simulations of a simplified version
of the multiple T-maze task of Gupta et al. (2010). The color code illustrates the gradient of
Q-values learned at the end of the experiment, when the reward is located in the right arm. The
continuous black line represents the trajectories (noised for illustrative purpose) performed by
the agent during the last six trials of the experiment. Black arrows indicate the directions that
are allowed to the agent during task performance. The two states in the central arm where
the agent has the choice to go either left or right are called the decision points throughout
the manuscript. The agent is not allowed to immediately get back to the state visited at the
previous timestep, except for the state located at the left of the central decision-point, where
the only possibility is to move towards the east. The small Q-values in dark blue correspond
to areas of the maze unreachable by the agent, due to the corridors’ walls. They thus remain
unchanged during the experiment.

is high, and the model thus does not consider that it should stop for a long
time in order to start a long offline reactivation phase before acting.

3 Results

The model-based bidirectional search algorithm (hereafter noted MB-RL bidirec-
tional search) was simulated for a series of numerical experiments in the multiple
T-maze task of Gupta et al. (2010) (Fig. 3)1. This task involves a central arm
where at each trial the agent has to choose to either turn left or right, in hope of
getting a reward at the end of the chosen external arm (left or right). Fig. 3 shows
an example of 5 simulated trials of the MB-RL bidirectional search algorithm just
after a change in the task rule occurred: the reward had been located in the left
arm for at least 50 trials (the change occurred after the model had performed 2000

1 The code is available at https://github.com/MehdiKhamassi/RLwithReplay



Modeling awake hippocampal reactivations with model-based bidirectional search 11

Table 1 Parameter values of the model

Parameter Value Meaning

nbActionsMax 5000 maximal duration of the simulations
β 20 online exploration/exploitation trade-off

[0,200] (range used in parameter exploration)
βR 10 offline exploration/exploitation trade-off

[0,200] (range used in parameter exploration)
γ 0.99 discount factor
ν 0.001 threshold defining surprising Q-value updates
nbPSmax 10 budget for one prioritized sweeping cycle
nbTSmax 10 budget for one trajectory sampling cycle
ε 0.1 threshold on the accumulated Q-value updates,

stopping the inference

actions; see all task and model parameters in Table 1) and then was located on the
right arm until the end of the simulated experiment (the experiment ended once
the model had performed 5000 actions). In this example, the model performed a
single perseverative error (illustrated by the single trajectory along the left arm)
followed by systematic visits to the right trials (illustrated by the trajectories of
the following four trials). This example illustrates how such a model-based learning
method with a prioritized offline inference process can quickly adapt to changes
in the task rule in simple tasks with a relatively small number of discrete states
(see Cazé et al. (2018) for a few comparisons of performance of simpler MB-RL
prioritized inference methods with an MB-RL algorithm with unordered inference,
or with model-free and Dyna variants of such prioritized methods). Fig. 3 finally
illustrates the maximum Q-values (i.e., state-action value function) learned by the
algorithm in each state of the maze. The color code indicates that the algorithm
successfully learned to assign the largest value to the state where reward can be
obtained, and to learn a gradient over states: the further away from reward, the
lower the value in a given state.

We then compared the average performance of the MB-RL bidirectional search
algorithm over 10 simulation experiments with two standard algorithms (Fig. 4):
MB-RL prioritized sweeping and MB-RL trajectory sampling (taken from Cazé
et al. (2018)), which are the two main components for offline inference that have
been assembled in our model (see the full model description in Section 2), which is
similar in spirit but heuristic-based and thus computationnally less costly than the
normative proposal of Mattar and Daw (2018). From Fig. 4 we can see that the
three algorithms perform similarly in terms of reward rate (ANOVA test, df = 2,
F = 0.26, p = 0.77). They all learn to reach a reward rate of about 1 (optimal
performance in this task) in less than 10 trials, and then show a drop in reward
rate after the change in reward location occurring at trial 50, and then recover
a nearly optimal performance again in less than 10 trials. The striking difference
in the performance of the three algorithms relies in the amount of time (i.e.,
Napierian logarithm of the number of iterations) they took on average per trial
to perform offline inference. Each of these moments of offline inference correspond
to moments where the simulated agent decided to stop in the current state (no
matter where it was located in the environment, we’ll come back to this issue later)
in order to use its internal world model to update Q-values until these Q-values
converge and stabilize. These moments are thus supposed to mimic moments where
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Fig. 4 Performance of the model compared to a pure prioritized sweeping algorithm and a
pure trajectory sampling algorithm. Top: Napierian (natural) logarithm of number of model
iterations during offline inference phases. Bottom: Performance of the models in terms of reward
rate. All algorithms reach similar reward rate and adapt to the change in reward location (from
left to right arm of the maze) within less than 10 trials. The pure trajectory sampling method
performs the largest number of offline inference iterations after a change in reward location,
while the MB-RL bidirectional search performs the smallest number of such iterations. Note
that here the parameters of the MB-RL bidirectional search model are chosen to give a good
trade-off between performance and offline inference duration, as analyzed later on in the paper.

an animal pauses and where awake hippocampal replays have been extensively
observed during neurophysiological experiments in rodents (Foster and Wilson,
2006; Johnson and Redish, 2007; Karlsson and Frank, 2009; Gupta et al., 2010;
Diba and Buzsáki, 2007; Pfeiffer and Foster, 2013; Ólafsdóttir et al., 2015; Redish,
2016; Ólafsdóttir et al., 2018).

In order to fairly compare the three algorithms, from the top curves plotted
in Fig. 4 we have removed from each algorithm the 10 initial inference iterations
which are systematically performed in each state to decide whether further of-
fline inference to stabilize Q-values is required or not. Strikingly, while MB-RL
trajectory sampling usually needs a large number of offline inference iterations to
converge (here on average 833 iterations), MB-RL prioritized sweeping and MB-RL
bidirectional search are much quicker (on average 60 and 36 respectively; Kruskal-
Wallis test, χ2 = 24.13, df = 2, p = 5.75e−6). Importantly, while the difference in
average replay duration is small between MB-RL prioritized sweeping and MB-RL
bidirectional search, it is nevertheless significant (Wilcoxon Mann-Whitney test,
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df = 1, ranksum = 148, zval = 3.21, p = 0.0013). The fact that MB-RL bidi-
rectional search and MB-RL prioritized sweeping perform a much smaller number
of offline iterations than trajectory sampling is probably explained by the con-
strained nature of the maze. Trajectory sampling is expected to be useful so as
to avoid updating the value of states one iss not going to visit to solve the task
(Sutton and Barto, 1998). In a navigation context, this optimization should be
much more important in open environments, rather than in the restrained mazes
we used here.

A striking property common to the three algorithms is that they spend a
lot of time doing offline inference at the beginning of the task and after a task
rule change, but barely perform any offline inference (in other words barely any
’replay’ or ’reactivation’) the rest of the time when the reward rate is high and
stable. This is similar to the alternation between periods of vicarious trial and
error and automatized behavior observed in animals (Redish, 2016). This property,
highlighted in MB-RL trajectory sampling and MB-RL prioritzed sweeping in
Cazé et al. (2018), is here replicated and also obtained with the new MB-RL
bidirectional search algorithm. It is important to notice that this is an emerging
property of the algorithms. Nothing is built within the models to tell them that it is
at these precise moments that offline inference should be invoked. It is because the
present approach consists in performing offline inference only when Q-values are
not stable, until they converge, that the algorithms start performing long offline
inference phases each time there is something new to learn which affects Q-values
and make them change from their previous values.

Interestingly, there is a trade-off in the parameters of the MB-RL bidirectional
search to produce either the highest possible reward rate or the lowest possible
number of offline inference iterations in this task. To study this, we performed 5
simulation experiments of the model for each combination of two key parameters in
the model: β which corresponds to the random exploration level during actual task
performance (i.e., decision of which action the agent will then actually perform in
the maze, according to Eqn. 1); βR which corresponds to the same decision-making
process for virtual actions mentally performed by the trajectory sampling process
during offline inference. The results are shown in Fig. 5. If β is low, the agent
is very exploratory during actual task performance, and thus does not maximize
reward rate. Thus there is a minimal value of β required to maximize reward rate
(typically 10 in this task). For βR, the influence on model performance is different.
For high βR, offline inference phases will consistently exploit and thus focus the
action sequences that seem best at a given moment. This will lead to minimizing
the duration of these offline reactivation events. Nevertheless, if βR > β, the
model will not be able to maximize reward rate. In contrast, if βR < β, the model
is more exploratory during offline inference, which takes more reactivation time,
but also permits to mentally well explore all alternatives and thus to maximize
reward rate during task performance. In Cazé et al. (2018) we have argued that
this property, in the case of MB-RL trajectory sampling, could be an explanation
why hippocampal awake replay events in rodents do not systematically focus only
on the trajectory that leads to reward (Johnson and Redish, 2007), and possibly
even why hippocampal reactivations during sleep are more noisy and less accurate
than during task performance (Roumis and Frank, 2015): possibly because the
time pressure (i.e., the horizon in machine learning terms) is smaller during sleep
than during task performance, and thus it is optimal to perform a higher degree
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Fig. 5 Optimization of the performance (cumulated number of reward) or of computational
cost (cumulated number of reactivation iterations) during a fixed experiment duration of 5000
iterations, as a function of two model parameters: β used for random exploration level during
online decision-making, βR used for random exploration level during offline decision-making
during trajectory sampling. For each pair of (β, βR) values, the figure shows the average per-
formance and offline inference duration over 5 full experiments of 5000 iterations each. Marker
c indicates the best parameter-set according to the Chebyshev aggregation function (Viejo
et al., 2015), which search for the solution which minimizes the distance with the point cor-
responding to the highest possible performance and lowest possible offline inference duration.
Marker ∗ indicates the best parameter-set for a given measure (either performance or offline
inference iterations). Note that for the top-left plot, ∗ is not indicated because it is confounded
with c. Markers + indicate parameter-sets that are less than 1% away from the optimum. The
bottom figure shows how the number of experiments changed this mean, which illustrates that
5 experiments are enough to have a good estimate of the mean.

of mental exploration. Here we expand this hypothesis by showing that it is also
true for the MB-RL bidirectional search model.

In order to analyze the sensitivity of the MB-RL bidirectional search model to
parameters, we performed a series of additional simulations of the multiple T-maze
task where we explored different parameter-sets on a grid. For each parameter-set,
we performed ten simulations of the experiment and report the average perfor-
mance and average number of reactivation iterations (Fig. 6). We found that the
threshold ε for the convergence of Q-values during offline reactivations and the
global budget nbLoopsMax imposed on the number of iterations per offline reac-
tivation phases only marginally affect the performance of the model. In contrast,
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Fig. 6 Sensitivity to model parameters. A) Decreasing the threshold ε for the convergence of
Q-values increases the number of model iterations during offline reactivations while slightly
decreasing the reward rate. B) Varying the global budget imposed on the number of iterations
per offline reactivation phases only marginally affects performance. In contrast, releasing this
constraint (infinite budget) makes the performance more stable during initial learning but
slower to stabilize after the task rule change (after trial 50). C) Alternating between priori-
tized sweeping (PS) and trajectory sampling (TS) every 10 trials during offline reactivation
constitutes an optimum in terms of performance. D-E) The highest reward rate (D) combined
with one of the lowest number of reactivation iterations (E) was obtained for ε = 0.1 and
nbPSmax = nbTSmax = 10 (the optimum is indicated by a ∗ on the figure).

we found an optimum frequency of alternation between prioritized sweeping (PS)
and trajectory sampling (TS) during offline reactivations. From this analysis, the
optimal parameter-set provides on average 91% of the optimal reward rate, and an
average of 3.6e-4 offline reactivation iterations per experiment (which is 46 times
smaller than what can be obtained with the worst parameter-set tested here).

After this analysis, it is interesting to look at two important properties of the
model: where in the maze does it predict that hippocampal reactivations should
occur; and in what order (forward, reversed, unordered) does it predict that consec-
utive states within the environment should be reactivated during offline inference.
The first property is illustrated in Fig. 7 which shows that during early learning
(i.e., the first 50 trials of the experiment), the simulated agent decides to stop
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mainly at the reward location (bottom of left arm) and in the central arm in order
to start performing offline inference. The color code in the figure also shows that
the simulated agent spends a little bit of time performing offline inference in each
state of the left arm (where the model goes most of the time, in accordance with
the reward rate curves of Fig. 4). This is again due to the simplistic approach
adopted here consisting in performing an initial series of 10 offline inference iter-
ations in order to see whether this resulted in changes in the Q-values and thus
to decide whether a long offline reactivation phase is needed or not. Nevertheless,
this reactivation duration is lower in all states other than reward location and cen-
tral arm. It is important to note that due to the normative perspective adopted
by Mattar and Daw (2018), in their work they have forced the model to perform
offline inference only at reward site or at starting point, while here this is another
emerging property of the model. The large amount of time spent during offline
inference at reward location is due to the large level of surprise associated to the
first encountering of reward there. This is produced by the prioritized sweeping
component of the model, whose probability of triggering an offline inference phase
is proportional to the absolute value of reward prediction errors. Similarly, during
the ’post rule change’ phase after a change in reward location (from left to right),
the model increases the number of offline inference iterations at the previous re-
ward location (left arm) because there are negative surprise signals there, and at
the new reward location (although mildly in our simulations). In Cazé et al. (2018)
we showed that the classical MB-RL prioritized sweeping predicted offline infer-
ence only at reward locations, but not in the central arm, in contrast to MB-RL
trajectory sampling. Here we show that the MB-RL bidirectional search model
combines these properties and performs a larger number of offline inferences at
both reward location and central arm. Furthermore, within the central arm, the
model predicts that offline reactivation events should occur mostly at decision
points. This is because performing the initial 10 iterations of offline inference on a
set of states that include one side of the decision point can lead to large changes
in the decision point’s Q-values if these values were mostly affected by the values
of the other side (e.g., if the agent most of time chooses the other arm of the
maze). Thus, similarly to Mattar and Daw (2018), the model can both account
for hippocampal reactivations at the reward locations (Gupta et al., 2010; Papale
et al., 2016) and at decision-points (Diba and Buzsáki, 2007; Pfeiffer and Foster,
2013).

The second important property of the model is illustrated in Fig. 8. The fig-
ure shows the analysis of the simulation data during all offline inference phases
regrouped together. The analysis focuses on the sequences of states sampled by
the model during reactivation phases, i.e. during moments where the agent is im-
mobile in the maze. It consists in counting the proportion of sequences of 3 (or
5) consecutively sampled states that can be labeled as forward because they cor-
respond to the same direction the agent followed during actual task performance,
or labeled as backward because they occur in the reverse order, or labeled as un-
ordered because they correspond to sequences of states that appear unordered or
random, even if they have been generated by the same MB-RL bidirectional search
algorithm. Finally, within forward and backward cases, we separately count state
sequences that correspond to trajectories that have never been performed by the
agent during actual performance, hence called imaginary sequences (as illustrated
in Fig. 1), following the terminology proposed by Gupta et al. (2010). For instance,
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Fig. 7 The experiment was split into four phases of equal duration in terms of number of
trials: 50 first trials of the experiment (early learning), 50 trials before change in reward
location (late learning), 50 trials after change in reward location (post rule change), 50 last
trials of the experiment (late experiment). For each phase of the experiment, the color scale
indicates the normalized (thus relative) proportion of time (number of iterations) spent by the
agent doing offline reactivations in each state of the maze. The figure shows that the model
initially spent most of its time doing offline reactivations at the decision points in the central
arm, and at the initial reward location (bottom of left arm). Then reactivations were much
reduced during late learning. After a rule change, the agent did some reactivations at previous
reward location because of the surprise due to reward omission, some reactivations in the
central arm (including decision-point), and a few reactivations around new reward location
(bottom of right arm). Finally, offline reactivations were reduced during late experiment.

moving forward from the bottom-left arm and continuing onto the bottom-right
arm is something that was not allowed to the agent during the task because the
agent is required to get back to the central arm to initiate a new trial (see black
arrows in Fig. 3 for trajectories allowed during task performance). This is also
true for the same trajectory in reverse order, when the agent is coming back from
the bottom-right arm. Similarly, the agent is not allowed to go from the top-left
arm onto the top-right arm. This is because during any trial of the task, once the
agent has decided to go either left or right from the top decision-point, the animal
cannot go back and has to go all through the arm until the bottom of the maze
in order to complete the trial. Thus any such sequence of states played by the
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Fig. 8 Proportion of forward (cyan), backward (red), imaginary (green) and unordered (dark
blue) state sequence orders simulated by the model during off-line reactivations. The figure
shows that backward and imaginary reactivations occurred mostly at reward locations. More
forward reactivations were generated by the model in the central arm than at reward locations.
These are consistent with experimental results (Gupta et al., 2010).

model during offline inference corresponds to an imaginary trajectory of mental
traveling.

The first important result illustrated by Fig. 8 is that the proportions of dif-
ferent orders of state sequences generated by the model are different between
moments when the agent was at reward locations and moments when it was in the
central arm. This was confirmed by a Chi-square proportion test applied to the
mean proportion of each order per location (χ2 = 30.1, df = 3, p < 0.001). When
not only looking at mean proportions but instead taking into account the pro-
portions generated by each of the 10 simulations experiments, the previous result
was confirmed by a significant interaction (F = 2.4e3, p < 0.001) obtained with
a two-way analysis of variance (ANOVA) with order x location as factors. The
ANOVA also showed no main effect of agent location during the offline inference
phase (F = 7.3e−28, p = 1), and a significant main effect of the sequence orders
that were generated during offline inference (F = 2.4e4, p < 0.001). Posthoc inves-
tigation revealed that the model prominently generates state sequences in forward
order (T > 46, p < 0.05). This is mostly due to the trajectory sampling algorithm.
Strikingly, the model generates a smaller proportion of forward state sequences
at reward locations (54.2%) than in the central arm (80.5%; Kruskal-Wallis test,
χ2 = 14.3, df = 1, p < 0.001). In contrast, backward state sequences (which
mimic hippocampal reverse replay (Foster and Wilson, 2006)) are generated by
the model nearly exclusively at reward locations (11.5%) but are nearly absent in
the central arm (0.1%). This is because backward state sequences are due to the
prioritized sweeping algorithm which is mainly triggered when large surprises are
encountered by the agent, like an unexpected reward or omission of an expected
reward. Once these surprises are detected, the agent stops for some time where it
is (i.e., at reward locations) and starts doing a long phase of offline inference. In
our simulations, because we allow an infinite budget of offline inference, the model
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takes as much time as needed to make the Q-values of the whole maze incorporate
the new surprising outcome and then converge (i.e., stabilize). During this phase,
prioritized sweeping tends to propagate these surprising outcomes to neighboring
states (Fig. 2). Because these neighbor states are here constrained by a corridor
(Fig. 3), this tends to generate clear sequences, including sequences in backward
order compared to the trajectory that the agent has just performed. The propor-
tion of backward sequences generated by the present MB-RL bidirectional search
model at reward locations (11.5%) is smaller than those generated by the MB-RL
prioritized sweeping algorithm in the same experiment (25%; Cazé et al. (2018))
and by a neural network implementation of prioritized sweeping (Aubin et al.,
2018). Experimental data typically show varying proportions between individuals,
from 6% for some rats up to 72% for others, with a mean of 27% (Foster and
Wilson, 2006). Future improvements of our model like removing the systematic
short invocation of trajectory sampling (which generates forward sequences) at
the beginning of each offline inference phase, and replacing this by a more explicit
measure of uncertainty (Pezzulo et al., 2014) to determine whether more offline
inferences are needed, could help making these percentages match experimental
data.

Importantly, unlike the Mattar and Daw (2018) model, the MB-RL bidirec-
tional search model also generates a substantial proportion (13.1%) of imaginary
state sequences while the agent was located at reward sites (Fig. 8), which cor-
respond to never-experienced trajectories during task performance. This is due
to the surprising outcome triggering long offline inference phases, where priori-
tized sweeping alternates with trajectory sampling. The latter mentally simulates
trajectories with a higher exploration rate than during task performance, as es-
tablished through the model property analysis (Fig. 5). As a consequence, the
model is unlikely to only generate state sequences corresponding to the familiar
trajectories performed by the agent during the task. This is a key property of
the bidirectional search process which requires the agent to generate a variety of
forward trajectories in the hope of making at least one of them connect with the
backward trajectories generated from reward location with prioritized sweeping
(Fig. 2). This could thus provide a computationally-grounded reason why imagi-
nary state sequences can sometimes be observed experimentally when an animal
is waiting at a reward site (Gupta et al., 2010).

Another key difference between our model and the one of Mattar and Daw
(2018) leads to different experimental predictions. In our model, the sudden ab-
sence of an unexpected reward (omission) generates a surprise signal (absolute
prediction error) which is sufficient to trigger offline inference. This is a classical
property of the prioritized sweeping algorithm which starts anytime absolute pre-
diction errors above a certain threshold are detected (Moore and Atkeson, 1993;
Peng and Williams, 1993). As a consequence, our model predicts that in case of
extinction, a short (<5 trials) but significant increase in hippocampal reactivation
should be observed (Fig. 9). In contrast, the Mattar and Daw (2018) predicts an
asymmetric effect of positive and negative prediction errors due to their differential
effects on behavior. In particular, their theory specifies that propagating negative
prediction errors is unhelpful if no better action is available. Thus in the extinction
experiment considered here, which involves negative surprises without alternative
best options, their model predicts no increase in hippocampal reactivation. While
they showed an example of experimental data showing asymmetric modulation by
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Fig. 9 Experimental prediction in the case of an extinction experiment. After 50 trials of
learning where the reward was systematically located on the left arm, reward is no longer of
the maze during another 50 trials of simulation. The figure illustrates that a negative surprise
such as those occurring during reward omission shall lead to a small transient increase in offline
inference iterations. This prediction is in contrast with the normative proposal of Mattar and
Daw (2018) which predict that no offline reactivation should occur in the case where no best
alternative option exist.

reward, we think this is very unlikely in the general case because it would require
rats to be omniscient and systematically knowing whether there exist alternative
outcomes. This is a general property of their model: because it is a normative
model, which is very important to establish why offline reactivations are useful at
all, it implies “the [...] unrealistic [...] calculation of gain [... which] requires that
the agent knows the effect of [offline reactivation] on its policy prior to deciding
whether to perform it.” (Mattar and Daw, 2018). In the general case, we predict
that rats encountering a salient negative surprise in the case of an omission should
most of the time stop to mentally process this surprise, which according to our
model should be accompanied by offline hippocampal reactivations, as illustrated
in Fig. 9.

4 Discussion

In this paper, we have presented a new MB-RL bidirectional search model of
hippocampal awake offline reactivations during rodent reward-based navigation.
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Similar to Cazé et al. (2018) and Mattar and Daw (2018), the model’s central
assumption is that the role of offline reactivation processes is to use the world
model internally learned by the agent to update and stabilize state-action values
(Q-values) and thus subsequently make better decisions during task performance.
The novelty here consists of allowing the model to start an offline reactivation
phase at any moment in any state of the environment, as long as there is either a
surprise signal (absolute reward prediction error above a certain threshold) or Q-
value instability detection signal (which implicitly signals choice uncertainty). In
either case, the model’s offline reactivation phase is organized like a bidirectional
search algorithm: alternating between a few iterations of prioritized sweeping that
propagate surprise signals from surprising states (i.e., mostly reward sites in a
maze) to predecessor states, and a few iterations of trajectory sampling which
starts from the agent’s current position in the environment and travels forward
in the aim of connecting with a state reached by prioritized sweeping. The model
considers that there is an infinite offline reactivation budget in the sense that
any started offline reactivation phase should last as long as needed to stabilize Q-
values (convergence criterion). Nevertheless, we also showed that the same model
can work with a finite budget for each reactivation duration, which in terms of
neural implementation could represent some modulation of deliberation time as a
function of the urge to act in the environment (Cisek et al., 2009).

We presented a series of simulation experiments in a 54-states discretized ver-
sion of the multiple T-maze task (Gupta et al., 2010). Simulation results showed
that the model can adapt as fast as classical prioritized sweeping and trajectory al-
gorithms in response to changes in reward locations, while saving computation cost
during offline inference compared to these two methods. Importantly, a first emerg-
ing property of the model is to drastically reduce offline reactivation time after
learning, due to the absence of surprise and Q-value instability signals, and sharply
increase offline reactivation duration in response to task changes. This mimics vi-
carious trial-and-error behaviors (Redish, 2016), where animals increase decision
time in response to task changes, as if they were hesitating between alternative
options. Strikingly, these hesitations of the animals at decision-point have been
experimentally showed to be accompanied by hippocampal reactivations (Johnson
and Redish, 2007), where forward trajectories can be decoded from hippocam-
pal activity before the animal initiates movement, consistent with the trajectory
sampling part of the present MB-RL bidirectional search model. Consistently, a
second emerging property of the model is that forward trajectories generated dur-
ing offline reactivations were more prominent at the decision-points of the central
arm than at reward locations. This is due to (1) higher Q-value instability at
decision-points because of the existence of alternative options, and (2) a substan-
tial proportion of offline reactivation time at reward locations dedicated by the
model to generate reverse trajectories from rewarding states to preceding states.
As a corollary, the model generates backward reactivations only at reward sites,
consistent with experimental findings (Foster and Wilson, 2006; Diba and Buzsáki,
2007; Gupta et al., 2010). Notably, the model is also able to generate imaginary
state sequences during offline reactivations, corresponding to trajectories that were
not allowed to the agent during task performance (Gupta et al., 2010). This is due
to the higher level of mental exploration during offline trajectory sampling than
during actual decision-making during task performance, which was shown here to
be appropriate in the model in terms of performance maximization in this task.
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Finally, the MB-RL bidirectional search model predicts that omission of expected
certain reward (including during extinction experiments) should generate a suffi-
cient surprise level to trigger a few trials (< 5 trials) of hesitations by the animal,
accompanied by a transient increase in hippocampal reactivation. This prediction
is in contrast with the model of Mattar and Daw (2018) which, due to its gain
term, considers the propagation of a reward prediction error through offline reac-
tivation “unhelpful if no better action is available, but advantageous if alternative
actions become preferred.”

In Cazé et al. (2018) we had performed a systematic simulation and analysis
of a series of existing machine learning algorithms for offline reactivations in the
same task. We found that different algorithms could generate different types of
experimentally observed hippocampal reactivations, namely forward, backward or
imaginary. Here we combined different algorithms within the bidirectional search
framework, and adopted the same approach consisting in performing offline re-
activations only when Q-values are not stable, until they converge. As a result,
the model starts performing long offline reactivation phases each time there is
something new to learn which affects Q-values and makes them change from their
previous values. This property is thus due to the machine learning-based hypothe-
sis that offline reactivation processes using a world model can be a useful mean to
learn Q-values, just as direct experience with the world and learning in a model-
free manner are. This property originates from the seminal Dyna architecture
proposed by Richard Sutton (Sutton, 1990), and has been simultaneously applied
to model hippocampal replay by Cazé et al. (2018) and Mattar and Daw (2018). In
Cazé et al. (2018) we had compared model-based and Dyna versions of trajectory
sampling and prioritized sweeping algorithms, and found that the model-free up-
date rule used in Dyna made learning slower and offline reactivations longer than
in model-based methods. As a consequence, the present model employs a model-
based learning rule while keeping Dyna’s principle to use offline inference as a
means to update Q-values, and thus as a way to “propagate reward information
over space and time ” (Mattar and Daw, 2018).

Mattar and Daw (2018) recently proposed a normative perspective on hip-
pocampal reactivations, considering that they constitute ways to update state-
action values during offline inference that are advantageous when they permit to
increase the cumulated sum of reward over time. In this sense, their work provides
a computational explanation of why offline reactivations are useful at all. Neverthe-
less, the normative perspective adopted constrained their model to be omniscient
about the world in order to decide whether or not to perform offline reactivations.
According to the authors, the model thus requires “unrealistic” computations so
that the agent knows precisely in which way offline reactivations will change its
behavior before even deciding to trigger offline reactivations. Besides, their model
predicts an asymmetric effect of positive and negative reward prediction errors due
to their differential effects on behavior. Interestingly, while this may be optimal
from a normative perspective, it is in apparent contradiction with the observa-
tion that human participants have the tendency to privilege confirmatory reward
prediction errors over disconfirmatory ones (Palminteri et al., 2017). Another limi-
tation of the Mattar and Daw (2018) model is that offline reactivations were forced
to occur either after a feedback at the end of a trial, or at ‘decision-point’ before
the beginning of a trial. Thus the model cannot explain why animals may some-
times stop elsewhere in the maze, and start performing hippocampal reactivations
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there. In contrast, the present model was allowed to perform offline reactivations
in any state of the environment, and chose to perform them mostly at reward
sites and decision-points as an emerging property of the characteristics discussed
above. Finally, their model cannot generate imaginary trajectories during offline
reactivations (Gupta et al., 2010), which is the case of the present model.

The present model constitutes a mechanistic and predictive proposal to con-
tribute to a better understanding of animals’ complex spatial navigation abilities.
These can be defined as abilities that go beyond simple stimulus-response behav-
ior, and rather require the integration of past information and future expecta-
tions to guide present decisions. One example is the ability of rodents to memo-
rize action sequences from past experience, and replay them mentally. While we
adopted in this paper an abstract level of modeling, the question of how a re-
alistic hippocampal-like neural network can encode sequences and replay them,
has been addressed in the literature, and is still an active research topic (Levy,
1996; Cutsuridis and Hasselmo, 2011; Saravanan et al., 2015; Jahnke et al., 2015).
The reader is referred to (Bhalla, 2019; Rennó-Costa et al., 2019), for recent re-
views. However, which cellular or molecular mechanisms could organize the replays
so as to implement the strategies used in reinforcement learning, like prioritized
sweeping or trajectory sampling, is still to be investigated. Another advantage
of computational approaches like the one adopted here is to put an emphasis on
the distinction between two types of system reactivations that may contribute
to learning: one consists of replaying recent experience from episodic memory,
which can be done in a model-free manner; the other consists of generating poten-
tial sequence through sampling of an internal model, thus generating model-based
mental traveling. While the two may be difficult to disentangle experimentally, the
present work highlights some key properties of model-based reactivations, such as
the ability to generate imaginary sequences, which goes beyond model-free replay
of past experience. From a broader perspective, the detailed offline reactivation
method proposed here could constitute a refinement of the model-based component
of architectures that combine model-based and model-free reinforcement learning
(Dollé et al., 2010; Caluwaerts et al., 2012; Renaudo et al., 2014), and which can
account for a wider range of animal complex spatial navigation behaviors (Dollé
et al., 2008, 2018).

The functions of the present model can also be discussed through the prism of
hippocampus-prefrontal cortex and hippocampus-striatum communication during
learning (Battaglia et al., 2008). The latter has been shown to be important for
learning place-reward associations (Lansink et al., 2009), which constitutes an im-
portant mechanisms to learn the reward function of an internal model (Khamassi
and Humphries, 2012). The former has been widely studied in terms of transfer
of episodic memory-based learning in the hippocampus to long-term memory in
the prefrontal cortex (Frankland and Bontempi, 2005). The prefrontal cortex is
known for its role in decision-making and cognitive control (Miller and Cohen,
2001) and is thus a good candidate to store in long-term memory the behavioral
policy learned by an animal through reinforcement learning (Pasupathy and Miller,
2005; Frank and Claus, 2006; Khamassi et al., 2015). Strikingly, the strength of
communication between hippocampus and prefrontal cortex has been found to
increase at the decision-point in a Y-maze, specifically during phases of the task
where the animal’s performance was suddenly rising (in the order of 10 trials) in
terms of reward rate (Benchenane et al., 2010). Moreover, it is only after record-
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ing sessions where learning occurred (thus sessions including reward rate increases)
and not after sessions where the reward rate remained stable that the prefrontal
cortex was found to be task-dependently reactivated during subsequent sleep by
the animal (Peyrache et al., 2009). These experimental results have been inter-
preted in terms of tagging relevant information to be subsequently consolidated
in memory during sleep (we would say here during offline reactivations in general,
including both sleep and quiet wakefulness periods). The present model provides a
general principle for learning through offline reactivations that is compatible with
these experimental results. The model further predicts that these experimental
results are not simply reflecting memory consolidation of things that have been
previously well learned, but are more generally related to the learning process it-
self. Consistently, the hippocampus has been found to be necessary for learning
in several reward-based navigation tasks (Girardeau et al., 2009; Jadhav et al.,
2012; de Lavilléon et al., 2015) and interactions between the hippocampus and
the orbitofrontal cortex have been recently proposed to contribute to exploit the
task structure learned by the internal model to infer the value of stimuli within
the environment (Jones et al., 2012; Klein-Flügge et al., 2013; Wikenheiser and
Schoenbaum, 2016; Zhou et al., 2019; Park et al., 2019).

A number of improvements to the model could be done in the future to over-
come its current limitations. First, in terms of the model’s mechanisms themselves,
we have simplistically considered that a first round of 10 simulated offline reactiva-
tion iterations were required to further determine whether an offline reactivation
phase should be triggered. This was a means to measure Q-values instability, espe-
cially in cases where a recent reward change information had been propagated to
one of the maze arm and required more offline reactivations at the decision-point
to be further propagated to the rest of the maze. However, less costly means to
estimate the need to perform further offline reactivations could be used in future
versions of the model. For instance, we could systematically track and memorize
recent Q-values instability so that the decision to initiate offline reactivations does
not require re-estimating this instability. Alternatively, we could use more explicit
measures of decision-making uncertainty (Pezzulo et al., 2013; Viejo et al., 2015) to
decide when to initiate offline reactivations. A second important limitation of the
present work is that the model has so far only been tested in a single simple discrete
navigation task. The model should be further simulated in a number of naviga-
tion tasks, including open environments so as to allow trajectory sampling to fully
express its potential, and compared to more experimental data. In particular, we
have only simulated cases of deterministic rewards: the reward was delivered with
probability 1 if the agent had chosen the right arm, and probability 0 otherwise. It
would be interesting to simulate the model in a task involving stochastic rewards
and analyze how this changes the learning and offline reactivation dynamics. It
would also be important to analyze the sensitivity of the model’s performance in
various tasks to different tested parameter-sets. This would for instance permit
to assess whether the need to be more exploratory during offline inference than
during task performance is a general property or not. Finally, it is also important
to keep in mind that simulating reinforcement learning models in discrete tasks
(i.e., grid-worlds) is good to learn about their properties, but makes them far from
generalizable to real-world situations. In Aubin et al. (2018) we have simulated
a neural network version of a dyna-Q algorithm with prioritized sweeping, so as
to be able to manipulate more realistic state descriptions (population coding of
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spatial position). We found that some model properties were preserved, such as
the percentage of generated backward state sequences. But importantly, we were
confronted with the necessity of having two types of offline reactivations: those
used to estimate the Q-values, which have a similar role to those presented in the
present paper, and another set of unrelated unordered offline reactivations neces-
sary to properly learn the world-model when represented with a neural network.
Thus, further systematic comparisons of the same models tested in discrete and
continuous environments are needed to better learn how robust and generalizable
these models are.
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Dollé L, Khamassi M, Girard B, Guillot A, Chavarriaga R (2008) Analyzing in-
teractions between navigation strategies using a computational model of action
selection. In: International Conference on Spatial Cognition, Springer, pp 71–86
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Peng J, Williams RJ (1993) Efficient learning and planning within the Dyna frame-
work. Adaptive Behavior 1(4):437–454

Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay
of rule-learning related neural patterns in the prefrontal cortex during sleep.
Nature Neuroscience 12(7):919–926

Pezzulo G, Rigoli F, Chersi F (2013) The mixed instrumental controller: using
value of information to combine habitual choice and mental simulation. Frontiers
in psychology 4

Pezzulo G, van der Meer MAA, Lansink CS, Pennartz CMA (2014) Internally
generated sequences in learning and executing goal-directed behavior. Trends in
Cognitive Sciences 18(12):647–657

Pezzulo G, Kemere C, Van Der Meer MA (2017) Internally generated hippocampal
sequences as a vantage point to probe future-oriented cognition. Annals of the
New York Academy of Sciences 1396(1):144–165

Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths
to remembered goals. Nature 497(7447):74

Pohl I (1971) Bi-directional search. Machine intelligence 6(127-140):10
Redish AD (2016) Vicarious trial and error. Nature Reviews Neuroscience

17(3):147–159
Renaudo E, Girard B, Chatila R, Khamassi M (2014) Design of a control architec-

ture for habit learning in robots. In: Conference on Biomimetic and Biohybrid
Systems, Springer, pp 249–260

Rennó-Costa C, da Silva ACC, Blanco W, Ribeiro S (2019) Computational models
of memory consolidation and long-term synaptic plasticity during sleep. Neuro-
biology of learning and memory 160:32–47

Roumis DK, Frank LM (2015) Hippocampal sharp-wave ripples in waking and
sleeping states. Current opinion in neurobiology 35:6–12

Saravanan V, Arabali D, Jochems A, Cui AX, Gootjes-Dreesbach L, Cutsuridis
V, Yoshida M (2015) Transition between encoding and consolidation/replay dy-
namics via cholinergic modulation of can current: a modeling study. Hippocam-
pus 25(9):1052–1070

Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and
reward. Science 275:1593–1599

Stachenfeld KL, Botvinick MM, Gershman SJ (2017) The hippocampus as a pre-
dictive map. Nature neuroscience 20(11):1643

Sutton RS (1990) Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In: Proceedings of the seventh
international conference on machine learning, pp 216–224

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press

Viejo G, Khamassi M, Brovelli A, Girard B (2015) Modeling choice and reaction
time during arbitrary visuomotor learning through the coordination of adap-
tive working memory and reinforcement learning. Frontiers in behavioral neu-
roscience 9

Wikenheiser AM, Schoenbaum G (2016) Over the river, through the woods: cog-
nitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews Neu-
roscience 17(8):513–523

Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble mem-
ories during sleep. Science (New York, NY) 265(5172):676–679



Modeling awake hippocampal reactivations with model-based bidirectional search 29

Zhou J, Montesinos-Cartagena M, Wikenheiser AM, Gardner MP, Niv Y, Schoen-
baum G (2019) Complementary task structure representations in hippocam-
pus and orbitofrontal cortex during an odor sequence task. Current Biology
29(20):3402–3409


