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Abstract— Surgery may involve precise instrument tip posi-
tioning in a minimally invasive way. During these operations,
the instrument is inserted in the body through an orifice. The
movements of the instrument are constrained by interaction
forces arising at the orifice level. The physical constraints
may drastically vary depending on the patient’s anatomy. This
introduces uncertainties that challenge the positioning task for a
robot. Indeed, it raises an antagonism: On one side, the required
precision appeals for a rigid behavior. On the other side, forces
applied at the entry point should be limited, which requires
softness. In this paper we choose to minimize forces at the orifice
by using a passive ball joint wrist to manipulate the instrument.
From a control perspective, this leads to consider the task as a
3 DOF wrist center positioning problem, whose softness can be
achieved through conventional low impedance control. However,
positioning the wrist center, even with a high static precision,
does not allow to achieve a high precision of the instrument
tip positioning when the orifice behavior is not known. To cope
with this problem, we implement a controller that servos the
tip position by commanding the wrist position. In order to
deal with uncertainties, we exploit an adaptive control scheme
that identifies in real-time the unknown mapping between the
wrist velocity and the tip velocity. Both simulations and in vitro
experimental results show the efficiency of the control law.

I. INTRODUCTION

During minimally invasive surgery, instruments and imag-
ing devices are inserted into a patient through small orifices.
The orifice can be created by the surgeon, e.g. during
laparoscopic surgery where cannulas are positioned through
the abdominal wall. It can also be natural, e.g. during a
prostate biopsy where an ultrasound probe and a needle are
inserted through the patient’s anus and rectum.

Fig. 1. Examples of keyhole surgery.

Inserting the instrument through an orifice induces me-
chanical constraints due to forces that appear at the instru-
ment insertion area. For patient safety, these forces should
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be minimized during instrument manipulation. When a robot
is used to manipulate an instrument for keyhole surgery,
a kinematic solution is commonly used to achieve such a
force minimization. Namely, the robot rigidly constrains the
movements of the instrument along 4 degrees of freedom :
one translation along the instrument axis and three rotations
around a given point R. The model underlying this choice
is that the body stiffness is maximal at an anatomical point
A located a few millimeters underneath the external body
surface, while the rotational stiffness is low compared to
the linear stiffness at point A. Therefore, minimizing the
interaction forces at the orifice area is supposed to be solved
by achieving R = A.

In the literature, two methods are used to rigidly constrain
the instrument movements along 4 DOFs. In some cases,
such as [?], a 4-DOF robot exhibiting a remote center of
motion (RCM) is used. The robot base is placed in the
workspace prior to instrument manipulation, in such a way
that its RCM R coincides with the insertion entry point
A. In other cases, such as in [?], a fully actuated, 6-DOF
robot is used and the kinematic constraint is achieved by the
mean of robot control. This allows placing the robot base
independently from the insertion point location as R is not
fixed with respect to the robot base. Note that in this case
a registration of A with respect to the robot base has to
be done prior to the operation, as proposed in [?], [?], [?].
Alternatively, a force sensor can be used to identify on line
point A by minimizing the interaction forces, as proposed in
[?]. A main limitation of all these approaches is that it rely
on a model that does not always correspond to the reality:
in many cases, minimizing the interaction forces at the entry
port is not equivalent to perfectly pivoting around a fixed
point. In a previous work, [?], we have shown that when
urologists perform a prostate biopsy while minimizing the
forces in the rectum it is not possible to define a fixed point
A around which the ultrasound probe rotates independently
from the penetration depth. Therefore, minimizing ‖

−→
AR‖,

either through installation, registration, or control, is not
appropriate and may lead to non minimal forces at the
insertion area.

In spite of rigidly constraining the robot to 4 DOF, the
robot can also involve passive (unactuated) joints at the wrist.
In [?], [?], [?], [?], a combination of three active DOFs is
used to position the wrist center; two passive joints in the
wrist allows free orientation of the instrument axis, while the
last DOF, corresponding to the instrument rotation around its
axis, is motorized. Such a combination allows to reduce the
degree of hyperstaticity and is likely to reduce forces at the



insertion area: if a large lateral force is applied, due to the
wrist passivity, the instrument axis orientation will change
accordingly and the force will be lowered. Interestingly,
this force minimization property does not depend on any
knowledge on the fulcrum location with respect to the robot.

A main drawback occurs when a precise location is to be
reached by the instrument tip T . Indeed, the position of T
inside the patient results not only from the position of the
wrist center W , which is directly controllable by the three
first actuators of the robot. Rather, the mechanical behavior
of the insertion area also influences the tip position. In a
previous paper, [?], we have evidenced this problem and
proposed to identify the mapping between the wrist velocity,
Ẇ and the tip velocity Ṫ . This identification allowed to
compute the desired displacement of point W from the
desired displacement at point T . However, this approach
resulted in a very slow adaptation and remaining errors in
the tip positioning, as a consequence of residual errors in the
identified model.

In the present paper, we reformulate the control problem
by a feedback at point T , add an on-line fast adaptation stage,
and show a robust convergence and high precision through
both simulations (involving very large errors in the initial
model estimation) and experiments.

II. ROBOTIC DEVICE AND ITS CONTROL LAW

A. Robotic device

Apollo (Fig. 2), fits in the category of the free-wrist robots,
[?].

Fig. 2. Apollo robot V2.

Apollo comprises six pivot joints serially assembled ac-
cording to a conventional anthropomorphic geometry: the
three first active joints form the shoulder and the elbow while
the wrist is composed of the three last passive joints, whose
axes coincide at point W . The kinematics is sketched in
Fig.3.

Kinematic models mapping joint positions q (resp. veloc-
ities q̇) into point W and point T positions (resp. velocities
Ẇ and Ṫ ) follows directly from the Denavit and Hartenberg
parameters given in Table III, by using the method described
in [?].

Fig. 3. Apollo kinematics scheme [?]

TABLE I
DH PARAMETERS OF THE APOLLO ROBOT [?].

TABLE II
DH PARAMETERS OF THE APOLLO ROBOT [?].

TABLE III
DH PARAMETERS OF THE APOLLO ROBOT [?].

i αi ai θi+1 di+1

0 0 0 θ1 0

1 π/2 0 θ2 0

2 0 25 cm θ3 0

3 π/2 0 θ4 30 cm

4 −π/4 0 θ5 0

5 −π/2 0 θ6 0

B. Low level controller

Apollo offers 2 modes of operation:

• The free mode, characterized by high transparency
and gravity compensation. This allows for manually
positioning the probe under ultrasound guidance [?].

• The locked mode, during which the urologist has his/her
hands free to perform the needle placement and the
biopsy. Here, it is desired that the robot maintains
precisely the target position, [?].

The control law used for the locked mode is an impedance
controller generating forces in response to position errors.
Due to the passive wrist, the force transmission model at
point W writes:

τ = JT
r f . (1)

where τ = [τ1 τ2 τ3]
T is the vector of the 3 first motors

joint torques, f the equivalent force at point W and Jr the
Jacobian matrix mapping the velocity of the three first robot
joints into point W velocity:

Ẇ = Jr [q̇1 q̇2 q̇3]
T (2)



The control law can be write as :

τ = τgrav + JT
r

(
kpεW + ki

∫ t

0

εW du

)
(3)

where τgrav is the gravity compensation [?], εW = Wd−W
is the error between the desired and the current position of
the robot wrist, kp and ki are respectively the proportional
and the integral gains, both scalar. Choosing low values for
kp and ki allows for exhibiting a low stiffness at point W ,
yet with a null static error (slow cancellation of the errors
despite disturbances at the insertion point).

Robot
+ EnvJT

r Jr

∫
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+ +
+

−
Wd

W

W

εW f q̇ Ẇτ

τgrav

Fig. 4. Apollo control law at point W

The present paper concerns the development of a third
operation mode: adjust. Here the robot shall automatically
displace the probe tip toward a desired location. The urologist
will use this mode to realize small adjusting displacements
with high precision if s/he is not satisfied by the result of
the manual positioning realized in the free mode. S/he will
typically generate from an interface a desired displacement
of the tip, ∆T . How to precisely an stably realize ∆T at
the tip level in spite of uncertainties in the behavior of the
insertion zone behavior, this is the question under study.

III. CONTROLLING THE TIP POSITION

A. Open-loop and closed-loop tip position control

During a surgical operation, the objective is not to position
the robot wrist center W but rather to control the position
of the instrument tip T . To reach a desired location Td, a
first option consists in computing the corresponding desired
position Wd for the wrist center. To do so, we first assume
that, locally, the mapping between Ẇ and Ṫ writes:

Ṫ = JẆ . (4)

Assuming that, when using the adjust mode, the urologist
specifies a small displacement ∆T for the tip while the
position of the wrist is W0, a desired position for the control
law (3) can be computed by:

Wd ≈W0 + Ĵ−1∆T , (5)

where Ĵ is an estimate of J.
However, this approach is very sensitive to errors made

in estimating J, as the error at point T is not servoed.
To overcome this issue, one can equip the passive joints
of the spherical wrist with position sensors, allowing for
computation of point T location in real-time. Closing the
loop at point T is then possible with the following control
law:

τ = τgrav + JT
r

(
kpĴ

−1εT + ki

∫ t

0

Ĵ−1εT du

)
(6)

where εT := Td − T , as illustrated in Fig. 5. With such a
controller, due to the integration of εT , a null error at point
T is guaranteed providing that the system remains stable.
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Fig. 5. Closed-loop control of the instrument tip

B. Simulation results

In order to illustrate the behavior of controllers described
by Eq. (3)-(5) and Eq. (6), a simple situation is considered
through a simulated example: the instrument insertion is
made through a known fixed point. A conventional lever
model allows to derive J:

Ĵ =

 − p
(L−p) 0 0

0 1 0
0 0 − p

(L−p)

 (7)

where L =
∥∥∥−−→WT

∥∥∥ and d is the distance from T to the fixed
insertion point, see Fig. 6.

Fig. 6. A simplistic lever model around a fixed point.

A first simulation result is given in Fig. 7. Here, the
interaction matrix is:

J =

 −0.5 0 0
0 1 0
0 0 −0.5

 (8)

Moreover, a perfect knowledge of the interaction matrix is
assumed: Ĵ = J.

It can be seen in Fig. 7 that in this ideal situation, both
controllers behave equivalently. A desired displacement ∆T
of 10 mm in a direction that is perpendicular to the insertion
axis is commanded and realized with a final null error. Notice
that the small overshoot observed in the plots is due to the
robot dynamics and integrator effect.

In a second simulation, J being unchanged, an estimation
error is introduced:

Ĵ =

 −1 0 0
0 1 0
0 0 −1

 . (9)



Fig. 7. Simulation results at point T for both controllers, when Ĵ = J

The simulation results, displayed in Fig. 8, show that:
• with the controller expressed at point W , the final error

is not zero, as expected;
• with the controller expressed at point T , the error

converges toward zero but the transient dynamics is
changed (a higher peak response can be observed). This
is due to the imperfect decoupling realized by Ĵ 6= J.

Fig. 8. Simulation results at point T for both controllers, when Ĵ 6= J

To further illustrate the degradation of the closed loop
dynamics with Controller (6), a last simulation is provided.
Here :

Ĵ =

 1 0 0
0 1 0
0 0 1

 (10)

This simulates a situation where, the estimated model is
completely wrong. Instead of representing a fixed point
around which the instrument can rotate, the estimated model
assumes that the orientation of the instrument is maintained
constant by the surrounding tissues while the translations per-
pendicular to the instrument axis are free. With such a drastic
estimation error, without surprise, the closed loop behavior
becomes unstable as a positive feedback is implemented, see
Fig. 9.

Fig. 9. When the estimation error becomes large, controller (6) may
diverge.

IV. ADAPTIVE CONTROL

A. Problem definition

As emphasized in Sec.III-B, errors in the estimation of the
instrument-patient interaction lead to deteriorate the closed
loop behavior when point T is fed back to the controller.
This can have a significant impact in real situations, where
the interaction cannot be modeled as a fulcrum and not
be precisely known in advance. For example, in [?], it has
been shown that the insertion point can be displaced more
than 20 mm during a prostate biopsies session. In [?] it is
demonstrated that the manipulation of the uterus with an
instrument through the vagina during a surgery can not be
modeled as a fulcrum.

In fact, the mapping J from W displacements to T
displacements depends on how the tissues surrounding the
insertion site deform. As the tissues deformation can not
be modeled and varies according to the site insertion (anus,
stomach, uterus, ...) the interaction between Ẇ and Ṫ can
be modelled with the general form:

J =

 Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 . (11)

Moreover, in order to take the tissues deformation into
account during a manipulation of the instrument, J has to
be continuously estimated as Ĵ.

In a previous work, [?], we partially solved the problem
assuming that the structure of J can be simplified. Indeed,
basing on the fact that the instrument is supposed to be rigid,
the displacements of W are supposed to be equal to those
of T along the penetration axis y. One thus estimates J by
a least square optimization thanks to the recording of the
velocity of the robot wrist (Ẇ ) and the instrument tip (Ṫ ).
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Fig. 10. Closed loop control of the instrument tip with the interaction matrix Ĵ estimated thanks to the Broyden method

In a more general case described by Eq. (11), it appears
that an instantaneous measurement of Ẇ and Ṫ are not
sufficient to identify the 9 unknown elements of J as only
three equations are available.

B. Broyden algorithm

The problem stated before is a nonlinear problem of
optimization since the matrix J may depend on the position
W and on the ill-known environment. In the literature,
one of the most common numerical method to solve this
kind of problem is the Newton method. More especially,
when it is necessary to estimate a Jacobian matrix, the
Broyden’s method applies. It is an iterative method that
can be used to estimate the Jacobian matrix [?]. It uses an
initial guess and then generates a sequence of approximate
solutions. In practice, it provides good convergence results
providing that the initial value is not too far from the real
value. Interestingly, this method has a low computational cost
allowing for an online estimation.

With the Broyden method [?], the estimated matrix Ĵk at
a discrete time k is computed thanks to:

Ĵk = Ĵk−1 + α
δTk − Ĵk−1.δWk

‖δWk‖2
.δWT

k , (12)

where:

• δTk = Tk − Tk−1 is the measured displacement of T
between the two iterations, in the robot frame.

• δWk = Wk −Wk−1 is the measured displacement of
W between the two iterations, in the robot frame.

• α is a scalar factor generally chosen between 0 and 1.

The parameter α tunes the convergence speed. When
tuning this parameter, a compromise must be achieved be-
tween increasing convergence speed (with high values) and
increasing robustness to noise (with low values).

Also, if the input data variation is too small or null, the
computation may become unstable. To avoid this instability,
on needs to verify that:

δW T
k.δWk = ‖δWk‖2 > 0 (13)

A threshold is introduced to ensure the previous condition is
verified.

If: ‖δWk‖ ≤ rε
then: Ĵk = Ĵk−1 (14)

where rε is a threshold to be tuned depending on the
application.

For both the simulations and experiments, α and rε has
been defined as:

• α = 0.5,
• rε = 0.1 mm.

The final control scheme is given in Fig. 10

C. Simulation results

In order to evaluate the capacity of the adaptive controller
to deal with large uncertainties, a simulation is performed
with the situation depicted by Eq. (10) and Eq. (8).

The simulation result is plotted in Fig. 11, and has to be
compared with the simulation result depicted in Fig. 9, in a
non adaptive case. While the initial behavior tends to diverge
(0 < T < 3.5s), the on-line estimation changes leading to a
convergence with a null error.

Fig. 11. Simulation of a reaching task at point T with the adaptive
controller and a very large initial estimation error.

Furthermore, even with a strongly wrong initial matrix,
after the convergence, the Broyden method provide the final
estimation:

Ĵ =

 −0.642 −0.191 0.0089
0 1 0

−0.0629 0.0773 −0.538

 (15)

Notice that although Ĵ differs from J, the estimation error
is small enough to obtain convergence.

V. EXPERIMENTAL SET-UP AND RESULTS

In order to validate the performances of the controllers de-
veloped in the previous sections experiments were conducted
with Apollo [?]. A device used as an orifice, consisting in a



Fig. 12. Description of the experimental set-up with the robot and the
interface.

clamping jaw covered with foam, was designed (see Fig.12).

The foam on the clamping jaw allows emulating an
interaction between the instrument and the tissues that does
not verify the fixed fulcrum assumption. The insertion point
around which the instrument instantaneously rotates is not
fixed. It can move within a 2 cm large area.

The experiment is a set of 20 trials for both controllers:
with a fixed estimation Ĵ (Fig. 5) and with adaption (Fig. 10).
Each trial consists in reaching a target 20 mm away from
different initial position T0 of point T . The estimated matrix
Ĵ is experimentally estimated from a rough measurement on
the insertion length, and assuming a fulcrum behavior:

Ĵ =

 −1.2 0 0
0 1 0
0 0 −1.2

 . (16)

The position of points T and W are registered during each
trial. Figures 13 and 14 show the experimental results for the
time evolution and the displacement of the probe tip ‖T −
T0‖.

The desired position is reached whatever controller is used,
due to the integral term, as explained in Sec. IV-C. Note that
the closed loop dynamics are slow in both case (rising time
typically 5 s) due to low gains used in the PI controller in
order to exhibit a low impedance.

The adaptive controller exhibits a fast convergence for Ĵ
which smoothens the closed loop dynamics. Therefore, in the
absence of overshoot, the convergence to the target is faster

Fig. 13. Set of 20 displacements of 20 mm for controller without
adaptation, as defined in Fig.5 .

Fig. 14. Set of 20 displacements of 20 mm for controller with adaptation
as defined in Fig.10 .

Fig. 15. Time of convergence for the 40 trials (Controller 3: without
adaptation - Controller 4: with adaptation

(5 times faster based on the 40 trials) as shown in Fig.15.

VI. CONCLUSION

This paper describes a control law allowing a 6 DOFs
robot equipped with a passive wrist to precisely reaching a
defined target with the tip of a tool inserted through an orifice
whose mechanical behavior is unknown.

From a control perspective, this leads to consider the task,
at the lowest level, as a 3 DOF wrist center positioning prob-
lem. However, positioning the wrist center, even with a high
static precision, does not allow to achieve a high precision
of the instrument tip positioning when the orifice behavior
is not known. To cope with this problem, we implement a
controller that servos the tip position by commanding the
wrist position. In order to deal with uncertainties, we exploit
an adaptive control scheme that identifies in real-time the
unknown mapping between the wrist velocity and the tip
velocity.

Both simulations and in vitro experimental results show
the efficiency of the proposed control law, even with large
initial estimation error in the robot-tool-orifice interaction.

Future work will focus on reaching a moving target.
Indeed, the movement of the instrument and the body wall
may induce organ’s deformation leading to a displacement
of the target (this is the case during prostate biopsy). The
main idea is to use the proposed control scheme in a visual
servoing loop based onto a real time measurement of the
target position in the medical images.



ACKNOWLEDGMENT

This work was supported by the French state funds man-
aged by the ANR (Agence Nationale de la Recherche) within

the Invesissements dAvenir Program (Labex CAMI) under
Reference ANR-11-LABX-0004.


