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Abstract. Engineering approaches to machine learning (including robot
learning) typically seek for the best learning algorithm for a particular
problem, or a set problems. In contrast, the mammalian brain appears as
a toolbox of different learning strategies, so that any newly encountered
situation can be autonomously learned by an animal with a combination
of existing learning strategies. For example, when facing a new naviga-
tion problem, a rat can either learn a map of the environment and then
plan to find a path to its goal within this map. Alternatively, it can
learn sequences of egocentric movements in response to identifiable fea-
tures of the environment. For about 15 years, computational neuroscien-
tists have searched for the mammalian brain’s coordination mechanisms
which enable it to find efficient, if not necessarily optimal, combinations
of existing learning strategies to solve new problems. Understanding such
coordination principles of multiple learning strategies could have great
implications in robotics, to enable robots to autonomously determine
which learning strategies are appropriate in different contexts. Here, we
review some of the main neuroscience models for the coordination of
learning strategies and present some of the early results obtained when
applying these models to robot learning. We moreover highlight impor-
tant energy costs which can be reduced with such bio-inspired solutions
compared to current deep reinforcement learning approaches. We con-
clude by sketching a roadmap for further developing such bio-inspired
hybrid learning approaches to robotics.

1 Introduction

The mammalian brain combines multiple learning systems whose interactions,
sometimes in a competitive way, sometimes in a cooperative way, are thought
to be largely responsible for the high degree of behavioral flexibility observed
in mammals [1–9]. For instance, the hippocampus is a brain region playing an
important role in the rapid acquisition of episodic memories – the memory of
individual episodes previously experienced, such as sequences of visited places
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while visiting a new city [10–12]. Together with the prefrontal cortex, the hip-
pocampus can link these episodes so as to store in long-term memory a mental
representation (or ‘model’) of statistical regularities of the environment [13, 9,
14]. In the spatial domain, such a mental model can take the form of a ‘cognitive
map’ [1]. Even if it constitutes an imperfect and incomplete representation of
the environment, it can be used to mentally explore the map [15, 16], or to plan
potential trajectories to a desired goal before acting [17, 18]. Such a model-based
strategy enables to rapidly and flexibly adapt to changes in goal location, since
the map can be updated instantaneously with the new goal location so that
the animal can plan the new correct trajectory in a one-trial learning manner
[9]. Nevertheless, such a flexibility comes at the expense of time- and energy-
consuming planning phases (the larger the map, the longer it takes to find the
shortest path between two locations). This is typically observed when a human
or an animal takes longer decision time after task changes, putatively implying
a re-planning phase [17, 19].

In contrast, the basal ganglia, and especially its main input region called
the striatum, is involved in the slow acquisition of procedural memories [20,
21, 7]. This type of memories is typically acquired through the repetition of
sequences of egocentric movements (e.g., turn left, go straight, turn right) or
sequences of stimulus-triggered responses (e.g., start moving in response to a
flash light, then stop in response to a sound) which become behavioral ‘habits’
[22, 23]. These habits are known to be inflexible, resulting in slow adaptation to
both changes in the environment (e.g., change in goal location) and changes in
motivation (e.g., an overtrained rat habitually presses a food-delivering lever,
even when it is satiated) [24]. Nevertheless, when these habits have been well
acquired in a familiar environment, they enable the animal to make fast decisions
and to perform efficient action sequences without relying on the time-consuming
planning system [4, 7]. Such a learning strategy is thus called model-free because
making a decision does not require the manipulation of an internal model to
mentally represent the potential long-term consequences of the actions before
acting. In contrast, it is the perception of a stimulus or the recognition of a
familiar location which triggers the execution of a habitual behavioral sequence.

It is fascinating how lesion studies have highlighted some degree of modular-
ity of the organization of learning systems within the brain. Lesioning the hip-
pocampus impairs behavioral flexibility as well as behavioral strategies relying on
a cognitive map (see [7] for a review). As a consequence, hippocampus-lesioned
animals only display stimulus-response behaviors in a maze and do not seem to
remember the location of previously encountered food. In contrast, animals with
a lesion to what is called the dorsolateral striatum have an intact map-based
behavioral strategy and perform less egocentric movements during navigation
(see [7] for a review). Nevertheless, the modularity is not perfect and an im-
portant degree of distributed information processing also exists. For instance,
lesions to what is called the ventral striatum seem to impair representations of
reward value which are required for both model-based and model-free learning
strategies (again see [7] for a review). Moreover, some brain regions do not seem
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to play a specific role in learning one particular strategy, but rather a role in
the coordination of these strategies. For instance, lesions to the medial prefrontal
cortex only impairs the initial acquisition of model-based strategies, but not their
later on expression [25]. Indeed, it seems that the medial prefrontal cortex plays
a central role in the arbitration between model-based and model-free strategies
[26]. As a consequence, lesioning a subpart of the medial prefrontal cortex can
even restore flexible model-based strategies in overtrained rats [27].

This paper is particularly aimed at illustrating how neuroscience studies of
decision-making have progressively helped understanding (and are still currently
investigating) the neural mechanisms underlying animals’ ability to adaptively
coordinate model-based and model-free learning, and to illustrate how this bio-
logical knowledge can help towards developing behaviorally flexible autonomous
robots. Since the computational models of these processes largely rely on the
reinforcement learning theoretical framework, the next section will first describe
the employed formalism. Then the third section will briefly review some of the
neuroscience results which contribute to deciphering the principles of this coor-
dination, and how this coordination was mathematically formalized by compu-
tational neuroscience models. The fourth section will then review some of the
experimental tests of these principles in robotic scenarios. We will finally discuss
the perspectives of this field of research, and how it could not only contribute to
improving robots’ behavioral flexibility, but also to reducing the computational
cost of machine learning algorithms for robots (by enabling to skip model-based
strategies when the robot autonomously recognizes that model-free strategies
are sufficient).

2 Formalism adopted to describe model-based and
model-free reinforcement learning

For simplicity, existing computational models are most often framed within stan-
dard Markov Decision Problem (MDP) settings, where an agent visits discrete
states s ∈ S, using a finite set of discrete actions a ∈ A. They can encounter
reward scalar values r ∈ R after performing some actions a in some states
s, which they have to discover. And there is a transition probability function
T (s, a, s′) : (S,A,S)→ [0; 1], which is a generative model underlying the statis-
tics of the task that the agent will face, and which basically determines what is
the probability of ending up in a state s′ after performing an action a in state s.

In navigation scenarios, states represent unique locations in space. In neuro-
science modeling studies, these states are usually equally spaced on a square grid,
an information expected to be provided by place cell activity in the hippocam-
pus, which are neurons that participate in the estimation of the animal’s current
location within the map. In the robot navigation experiments that will be pre-
sented later on, the state space discretization process is autonomously performed
by the robot after an initial exploration of the environment. As a consequence,
different states have different sizes and are unevenly distributed. It is important
to note that these models can easily be extended to more distributed or con-
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tinuous state representations [28], for instance when facing Partially Observable
Markov Decision Process (POMDP) settings [29]. The models reviewed here can
also be generalized to more continuous representations of space and actions (e.g.,
[30, 31]). Nevertheless, we stick here to the discrete state representation for the
sake of simplicity and because it has a high explanatory power.

As classically assumed within the Reinforcement Learning (RL) theoretical
framework, the agent’s goal is here considered to be the maximization of the ex-
pected value of the long-term reward, that is the maximization of the discounted
sum of future rewards over a potentially infinite horizon: E [

∑∞
t=0 γ

tr(st, at)],
where γ (γ < 1) is a discount factor which basically assigns a weaker weights to
long-term rewards than to short-term rewards. In order to meet this objective,
the agent will learn a state-action value function Q : (S,A) → R which evalu-
ates the total discounted sum of future rewards that the agent expects to receive
when starting from a given state s, taking the action a and then following a
certain (eventually learned) behavioral policy π:

Qπ(s, a) = E

[∑
t

γtr(st, at) | s0 = s, a0 = a, at = π(st), st+1 ∼ T (st, at, .)

]
(1)

Saying that the agent adopts a model-based RL strategy means that the
agent will progressively try to estimate an internal model of its environment.
Conventionally, this model is the combination of the estimated transition func-
tion T̂ (s, a, s′) and the estimated reward function R̂(s, a) that aims at capturing
the rules that the human experimenter chooses to determine which (state,action)
couples yield reward in the considered task.

Various ways to learn these two functions exist. Here, we will simply con-
sider that the agent estimates the frequencies of occurrence of states, actions
and rewards from its observations. Then, the learned internal model can be used
by the agent to infer the value of each action in each possible state. This infer-
ence can be a computationally costly process, especially when all (s, a) are to
be visited multiple times before reaching an accurate estimation of the state-
action value function Q. Some heuristics exist to simplify the computations, or
to make it less costly, like trajectory sampling [32] or prioritized sweeping [33,
34], which we review in [16]. Some alternatives to full model-based strategies
exist, like the successor representation [35], which provides the agent with more
flexibility and generalization ability than a pure model-free strategy, a smaller
computational cost than a pure model-based strategy, and at the same time can
contribute to describe some neural learning mechanisms in the hippocampus [36,
37]. Nevertheless, for the sake of simplicity, here we will consider that the infer-
ence process in the model-based (MB) RL agent is performed through a value
iteration process [32]:

Q
(t+1)
MB (s, a) = R̂(t)(s, a) + γ

∑
s′

T̂ (t)(s, a, s′) max
k∈A

Q
(t)
MB(s′, k) (2)

In contrast, an agent adopting a model-free RL strategy will not have access
to nor try to estimate any internal model of the environment. Instead, the agent
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will iteratively update its estimation of state-action value function through its
interactions with the environment. Each of these interactions consist in perform-
ing an action a in a state s and observing the consequence in terms of the reward
r that this yields and the new state s′ of the environment. Again, if we address
a navigation problem, the possible actions are typically movements towards car-
dinal directions (North, South, East, West) and the new state s′ is the new
location of the agent within the environment after acting. A classical and widely
used model-free RL algorithm is Q-learning [38]:

Q
(t+1)
MF (st, at) = Q

(t)
MF (st, at) + α(rt + γmax

k∈A
Q

(t)
MF (st+1, k)−Q(t)

MF (st, at)) (3)

where α ∈ [0; 1] is the learning rate, and the term between parentheses, often
written δt is called the temporal-difference error [32] or the reward prediction
error [39] because it constitutes a reinforcement signal which compares the new

estimation of value (rt + γmaxk∈AQ
(t)
MF (st+1, k)) after performing action at in

state st, arriving in state st+1 and receiving a reward rt, with the expected

value Q
(t)
MF (st, at) before executing this action. Any deviation between the two

is used as an error signal to correct the current estimation of the state-action
value function Q.

Finally, for the decision-making phase, no matter if the agent is model-free or
model-based, the agent selects the next action a to perform from a probability
distribution over actions in the current state s computed from the estimated

state-action value function x(t)(s, a) (with x(t)(s, a) = Q
(t)
MB(s, a) if the agent

is model-based, or x(t)(s, a) = Q
(t)
MF (s, a) if the agent is model-free), using a

Boltzmann softmax function:

P (t)(a|s) =
eβx

(t)(s,a)∑
k∈A e

βx(t)(s,k)
(4)

where β is called the inverse temperature which regulates the exploration/exploita-
tion trade-off by modulating the level of stochasticity of choice: the closer β is
to zero, the more the contrast between Q-values will be attenuated, the extreme
being for β = 0 which produces a flat action probability distribution (random
exploration); in contrast, the larger the value of β, the more the contrast between
Q-values will be enhanced, which makes the probability of the action with the
highest Q-value close to 1 when β tends towards ∞ (exploitation).

3 Neuroscience studies of the coordination of
model-based and model-free reinforcement learning

Reinforcement learning models (initially only from the model-free family) have
started to become popular in neuroscience in the mid 90s, when researchers
discovered that a part of the brain called the dopaminergic system (because it
innervates the rest of the brain with a neuromodulator called dopamine) in-
creases its activity in response to unpredicted reward, decreases its activity in
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response to the absence of a predicted reward, but does not respond to predicted
ones, as can be modeled when δt, the right part between parentheses in Equa-
tion 3, is positive, negative or null, respectively [39]. This discovery was followed
by a large set of diverse neuroscience experiments to verify that other parts of
the brain could show neural activity compatible with other variables of rein-
forcement learning models like state-action values (see examples of comparisons
of neuroscience results with RL models’ predictions in [40, 41]; and see [5] for a
review).

More important for the topic of this paper, since about 10 years, an increasing
number of neuroscience studies have started to investigate whether human and
animal behavior during reward-based learning tasks could involve some sort of
combination of model-based (MB) and model-free (MF) learning processes, and
what are the neural mechanisms underlying such a coordination.

The simplest possible way of combining MB and MF RL processes is to con-
sider that they occur in parallel in the brain, and that any decision made by the
subject results from the simple weighted sum of MB and MF state-action values

(i.e., replacing x(t)(s, a) in Equation 4 by (1 − ω)Q
(t)
MB(st, at) + ωQ

(t)
MF (st, at),

with ω ∈ [0; 1] a weighting parameter). This works well to have a first approx-
imation of the degree with which different individual subjects, whether human
adults [42], human children [43], or animals [44], rely on a model-based system
to make decisions while considering the ensemble of trials made by the sub-
ject during a whole experiment. This has for instance helped understand that
children make more model-free decisions than adults because their brain area
subserving model-based decisions (their prefrontal cortex) takes years to mature
[43]. This has also helped better model why some subjects are more prone than
others to be influenced by reward predicting stimuli (which has implication to
understand stimulus-triggered drug-taking behaviors in humans): roughly be-
cause their model-based process contributes less to their decisions [44].

Nevertheless, a systematic weighted sum of MB’s and MF’s decisions has the
disadvantage of systematically requiring the (potentially heavy) computations
from both learning systems. In contrast, it is thought that relying on habitual
behaviors learned by the model-free system when the environment is stable and
familiar is useful to avoid the costly inference-related computations of the model-
based system [4, 5]. There could thus be some evolutionary reasons why humans
do not always perform rational choices as could be (more often) the case if they
were relying more on their model-based system [45]: namely that they would not
be able to make fast decisions in easy familiar situations. Instead, they would
always need to make long inferences with their internal models before deciding.
Thus, they would be exhausted at the end of the day if they had to think deeply
for all the simple decisions they have to make everyday, like whether they should
drink a coffee before taking a shower or the opposite, whether they should wear
a blue or a red shirt, where to go for lunch, etc.

Alternatively, early neuroscience studies of the coordination of MB and MF
process hypothesized a sequential activation of the two systems: humans and
animals should initially rely on their MB system when facing a new task, so
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as to figure out what are the statistics of the task and what is the optimal
thing to do; and as they repeat over and over the same task and get habituated
to it (making it become familiar), they should switch to the less costly MF
system which hopefully will have had time to learn during a long repetition
phase. Moreover, if suddenly the task changes, they should restart using their
MB system (and thus break their previously acquired habit) in order to figure
out what has changed and what is the new optimal behavioral policy. And then
again after many repetitions with the new task settings, they can acquire a new
behavioral habit with the MF system.

An illustrative example is the case where someone has to visit a new city. In
that case, people usually look at a map, which is an allocentric representation
of the city, and try to remember the parts of the maps that are useful to reach
a desired location. And then, once people walk through the city, if they sud-
denly find themselves in front of some landmark that they thought would not be
encountered during their planned trip (e.g., a monument), they can close their
eyes and try and understand where they might actually be located within their
mental map, and which change in their trajectory they should operate. This is
typically a MB inference process. In contrast, when one always takes the same
path from their home until their workplace, they rarely perform MB inference,
and rather let their body automatically turn at the right corner and lead them
to their usual arrival point. This works well even if one is discussing with a friend
while walking, or is not fully awake. We thus think that in such a case the brain
has shifted its decisions to the MF system. This permits to free other parts of
the brain which can be used to think while we walk about the last book we read,
or to try and solve the maths problem we are currently addressing.

One initial computational proposal for the coordination of MB and MF learn-
ing systems which can well capture this dynamics consists in comparing the un-
certainty of the MB and MF systems and relying on the most certain one [4]. This
can be achieved if a Bayesian formulation of RL is adopted where the agent does
not simply learns point estimates of state-action value functions, but rather full
distributions over each (state,action) pair value. In that case, the precision of the
distribution can be used to represent the level of uncertainty. In practice, when
facing a new task, the uncertainty in both systems is high. But the uncertainty in
the MB system decreases faster with learning (i.e., after less observations made
following interactions of the agent with the world, even if these observations are
processed during a long inference phase). As a consequence, the agent will rely
more on the MB system during early learning. In parallel the uncertainty in the
MF system slowly decreases, until the MF system is sufficiently certain to take
control over the agent’s actions. When the task changes (e.g., the goal location
changes, or a path is now obstructed by an obstacle), uncertainty re-increases
in both systems, but again it decreases faster in the MB system, so that again a
sequence of MB decisions followed by MF decisions after a long second learning
phase can be produced.

However, systematically monitoring uncertainty in the MB system can be
computational heavy, and does not really permit the avoidance of the costly
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computations of the MB system when the MF system is currently leading. Al-
ternatively, a more recent computational neuroscience model proposes to only
monitor uncertainty within the MF system, and considers that the MB system
is by default providing perfect information, so that it should be chosen when the
MF system is uncertain, and avoided only when the MF system is sufficiently
certain [6]. This works well in a number of situations and enables to well cap-
ture the behavior of animals in a number of experiments. However, there are
situations where this assumption cannot be true. In particular, as we will illus-
trate with some robotic tests of this kind of models in the next section, if the
agent has an inaccurate internal model, it is better to rely on the more reac-
tive MF system even when it is still uncertain [46, 47]. Less costly alternative
estimations of uncertainty can be used to permanently monitor both the MB
and the MF system. For instance, the degree of instability of Q-values (MB or
MF) before convergence is reached can be a good proxy to uncertainty [16, 48].
Choice confidence can also give a relatively good proxy to choice uncertainty in
simple situations, by measuring the entropy of the probability distribution over
all possible actions in a given state and comparing MB and MF estimations of
this measure [19]. This moreover enables to well capture not only choices made
by human subjects during simple decision-making tasks, but also their decision
time (the more uncertain they are, the more time they need to make their de-
cision). Finally, this type of mechanism also enables to explain why the ideal
MB-to-MF sequence is not always true, since early choices of human subjects
can sometimes significantly rely on the MF system because their MF system
might initially be overconfident [19].

Another important current question is whether uncertainty alone is sufficient
to arbitrate between MB and MF systems [49], or whether, when the two sys-
tems are equally uncertain, the agent should rely on the least computationally
costly one [50]. If we want the agent to be initially agnostic about which system
is more costly, and if we even want the agent to be able to potentially arbitrate
between N different learning systems with different a priori unknown computa-
tional characteristics, then one proposal is simply to measure the average time
taken by each system when it has to make decisions [50]. In some of the robotic
experiments that we will describe in the next section, we found that this princi-
ple works robustly, enables to produce the ideal MB-to-MF sequence, not only
during initial learning but also after a task change. We will come back to this
later.

Finally, other current outstanding questions are whether the two systems
shall always be in competition, or whether they shall sometimes also cooper-
ate (as can be achieved with the weighted sum of their contribution described
above); and whether an efficient coordination mechanism shall arbitrate between
MB and MF at each timestep from the current available measures (e.g., uncer-
tainty, computational cost, etc.), or whether it is sometimes more efficient to
learn and remember that the MF system is usually better in situation type A
while the MB system is better in situation type B. The latter could enable the
agent to instantaneously rely on the best memorized system without needing



9

Habit Planning

Selection

Coordination
Strategy

Model-free
Strategy

Exploration

Random
Strategy

Action Cells

Meta-controller

Cue Cells Place Cells

Planning Graph

Model-based
Strategy

Fig. 1. The generic architecture for the coordination of multiple learning strategies
applied to navigation proposed by Dollé and colleagues [9]. Three main learning strate-
gies are considered here (but the paper tests other variants, such as the combination of
multiple instances of the same strategy, which would correspond to a case of ensemble
learning [51]): a model-based planning strategy; a model-free habitual strategy; and a
distinct random exploration strategy in order to avoid cumulating the exploratory de-
cisions of the two other strategies. A so-called ‘meta-controller’ performs the high-level
strategy coordination process. This process can consists in different manners of coor-
dinating strategy, such as giving the hand to the least uncertain one [4]. Nevertheless,
in [9] the meta-controller learns which strategy yields the largest amount of reward in
different locations of the environment or in the presence of different stimuli. Adapted
from [9].

to fully experience a new situation identified as belonging from a recognized
type. This issue relates to current investigations in subfields of machine learning
known as transfer learning, life-long learning and open-ended learning [52–54].
One solution to this coordination memory problem consists in adopting a hi-
erarchical organization where a second, higher-level, learning process (in what
Dollé and colleagues call a ‘meta-controller’ ) learns which strategy (model-based,
model-free or random exploration) is the best (in terms of the amount of reward
it yields) in different parts of the environment [9] (Fig. 1). This model learns
through RL which strategy is the most efficient in each part of the environment.
It can moreover learn that a certain equilibrium between MB and MF processes
is required for good performance, thus resulting in cooperation between systems.
It can even learn to change through time the weight of the contribution of each
system, as learning in the MF system progresses, thus producing something that
looks like the ideal MB-to-MF sequence.
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With these principles in hand, the Dollé model [9] can explain a variety of
rat navigation behaviors experimentally observed, including data that initially
appeared as either contradictory to the cognitive map theory, or contradictory
to the associative learning theory which approximately considers that navigation
behaviors shall all be learned through model-free reinforcement learning. Finally,
it is worthy of note that performing offline replay of the MB system can result in
learning by observation in the MF system, so that the two somehow cooperate
[16], as inspired by the now classical DYNA architecture [55].

Overall, this short review highlights that the investigation of the principles
underlying the adaptive coordination of model-based and model-free reinforce-
ment learning mechanisms in humans and animals is currently an active area of
research in neuroscience.

4 Robotic tests of bio-inspired principles for the
coordination of model-based and model-free
reinforcement learning

The importation of these bio-inspired ideas to robotics is quite recent, and is
still an emerging field of research. Nevertheless, a few studies and their outcomes
deserve to be mentioned here.

To our knowledge, the first test with a real robot of a bio-inspired algorithm
for the online coordination of model-based and model-free reinforcement learning
has been presented in [46]. This work included an indoor robot navigation sce-
nario with the Psikharpax rat robot [56] within a 2mx2.5m arena (Fig. 2). The
robot first explored the environment to autonomously learn a cognitive map
of the environment (hence a mental model used by its model-based learning
strategy). In addition, the robot could use a model-free reinforcement learning
strategy to learn movements in 8 cardinal directions in response to perceived
salient features within the environment (i.e., stimuli in the vocabulary of psy-
chology). The latter MF RL component of the model was later improved in [57]
to make it able to learn movements away from visual features when needed. The
proposed algorithm for the online coordination of MB and MF RL was based on
the computational neuroscience model of Dollé and colleagues [58, 59, 9], which
has been presented in the previous section and sketched in Fig. 1.

The first important result of this robotic work is that the algorithm could
autonomously learn the appropriate coordination of MB and MF systems for
each specific configuration of the environment that was presented to the robot.
For a first configuration associated to an initial goal location (where the robot
can obtain a scalar reward), the algorithm learned that the MB strategy was
appropriate to guide the robot from far away towards the goal, and that the
MF strategy was appropriate to control the fine movements of the robot when
closer to the goal. This was an emergent property of the coordination that was
not designed by human. Instead, it was autonomously learned by the algorithm
in response to the specific environment where the robot was located. The reason
is that the robot had less explored the area around the initial goal location.
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Fig. 2. Robotic experiments presented in [46] and aiming at testing the performance
of a bio-inspired algorithm for the online coordination of model-based and model-free
reinforcement learning. The algorithm itself is based on the computational neuroscience
model of Dollé and colleagues [9], which is presented in Fig. 1. The photo shows the
Psikharpax rat robot [56] within a 2mx2.5m indoor arena. Salient features are displayed
on the surrounding walls and objects because the purpose of this research work was not
on vision, but how to make the robot use the noisy perception of these features with
its cameras in order to learn a simple cognitive map that can be used for model-based
navigation. The green and red dots superimposed on the photo show the location of
the place cells of the cognitive map learned by the robot. The blue dot (invisible to
the robot) shows the current location of the goal, where the robot receives a scalar
reward during the first part of the experiment. Later on this goal location is moved
without informing the robot, so that it needs to detect this change and learn a new
appropriate coordination of model-based and model-free strategies to quickly reach a
good performance. In the last part of the experiment, the goal is again moved back to
its initial location, to show that the coordination algorithm can, after detecting this
new change, instantaneously retrieve its memory of the first appropriate coordination
and thus quickly re-display a good performance without re-learning. Finally, the green
dots are labelled ‘taxon’ (a taxon strategy in neuroscience consists in learning actions in
response to visual cues), which corresponds to areas where the algorithm considers the
model-free strategy as the best strategy, while red dots are labelled ‘planning’ because
the algorithm considers that the model-based strategy is the most appropriate there.
Adapted from [46].
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Thus, its cognitive map was less precise there. As a consequence, a pure MB
version of the algorithm could learn to approach the robot near the goal, but
could not learn to precisely reach it (because of the imprecision in the map). As
a consequence, the autonomous coordination algorithm found out that the MF
system could compensate for this lack of precision. From this simple example
we can learn two things: first, that in contradiction to the assumption made by
some previously discussed computational models that the MB system has access
to perfect information, the map (i.e., model) learned by the MB system can be
imperfect, and the coordination algorithm has to cope with it. More generally,
we think that when experimenting with robots, there will always be a situation
where the map cannot be accurately learned, because of noisy perceptions, prob-
lems with the light, etc. So, rather than endlessly trying to refine the MB system
to make it appropriate for each new situation at hand, it might be better to let
the coordination algorithm autonomously find out what is the appropriate al-
ternation between MB and MF for the present situation. The second thing that
we can learn from this example is that a simple coordination algorithm which
puts MB and MF systems in competition, and selects the most efficient one,
can sometimes produce a sort of cooperation between them. In this particular
example, a learned trajectory of the robot to the goal can be hybrid, involving
a first use of the MB strategy when far away from the goal, and then a shift to
the MF strategy when getting closer. This enables us to draw a model-driven
prediction for neuroscience: that sometimes animals solving these types of task
may display a trajectory within a maze or an arena that is not the result of
a single learning system, but rather a hybrid byproduct of the coordination of
multiple systems.

Another important result of this robotic work relates to its ability to learn
context-specific coordination patterns, which can relate to what people call
episodic control. This occurred when we changed the goal location after some
time, and let the robot adapt to the new configuration. What happened is that
the algorithm first detected the change because of the different profile of reward
propagation through its mental map that this induced. Then the algorithm de-
cided to store in memory the previously learned coordination pattern between
MB and MF, and to learn a new one. After a new learning phase, the algorithm
found a new coordination pattern adapted to the new condition, thus producing
good performance again. Finally, we suddenly moved the goal location back to its
initial location. The algorithm could detect the change and recognize the previ-
ous configuration (again thanks to the profile of reward propagation through its
mental map). As a consequence, the algorithm retrieved the previously learned
coordination pattern, which enabled the robot to instantaneously restore the
appropriate behavior without re-learning.

Nevertheless, some limitations and perspectives of this seminal work ought to
be mentioned here. First, the coordination component of the algorithm (which is
called the meta-controller in [9, 46, 57]) slowly learns through MF RL (in addition
to the MF RL mechanism used within the MF system dedicated to the MF
strategy) which strategy is the most appropriate in each part of the environment
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(In other words, the model involves a hierarchical learning process in addition
to the parallel learning process between MB and MF strategies). While this is
good for the robot to be able to memorize specific coordination patterns for
each context (i.e., for each configuration of the goal location within the arena),
this nevertheless requires a long time to achieve a good coordination within
each context. Thus, it would be interesting to also test coordination mechanisms
based on instantaneous measures such as uncertainty, as discussed in the previous
section. A second limitation is that this experiment involved a specific adaptation
of a coordination model to a simple indoor navigation task, with a small map,
a small number of states to learn, and an action repertoire which is specific to
navigation scenarios. A third limitation is at the technical level, involving an old
custom robot. Thus, it it not clear if these results could be generalized to other
robotic platforms facing a wider variety of tasks, and sometimes more complex
tasks involving a larger number of states.

Fig. 3. (Left) Human-Robot Interaction task tested in [60]: the human and the robot
collaborate to put all boxes in a trashbin. (Right) Navigation task autonomously
mapped and discretized by the robot during exploration [60, 50]. The red area indi-
cates the goal location whereas the green areas indicate starting locations of the robot.
Red numbers are starting location indexes; blue numbers are some states where some
changes in the configuration of the environment can occur. Adapted from [60].

A more recent series of robotic experiments with the same research goal (i.e.,
assessing the efficience and robustness of bio-inspired coordination principles of
MB and MF learning) has been presented in [61, 62, 47] and later in [60, 50, 63].
First, [61, 62, 47] compared different coordination principles, including methods
coming from ensemble learning [51] in several different simulated robotic tasks.
They found again that the MB system was not always the most reliable system,
especially in tasks with hundreds of states, where the MB system requires long
inference durations to come up with a good approximation of the state-action
value function Q. These experiments highlighted the respective advantages and
disadvantages of MB and MF reinforcement learning in a variety of simulated
robotic situations, and concluded again for the added value of coordinating them.
In [60, 50, 63], simulated and real robotic experiments were presented, some in-
volving navigation with a Turtlebot, and others involving simulated tasks with
the PR2 robot and the Baxter robot (Fig. 3).
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The first important result of these new series of experiments to highlight
is that the coordination of MB and MF RL was efficient in a variety of tasks,
including navigation tasks with detours, non-stationarity of the configuration of
the environment (i.e., sudden introduction of obstacles obstructing some corri-
dors), but also simple human-robot interaction tasks. In the latters, the human
and the robot had to cooperate to clean a table by putting objects in a trashbin.
Importantly, some objects were reachable by the human, some by the robots,
thus forcing them to communicate and cooperate. In that case, the model-based
system could compute joint action plans where actions by the robot and actions
by the humans alternated. In all these situations, the robot could autonomously
learn the task and reach good performance.

The second important result to highlight is that instantaneous measures of
uncertainty in MB and MF systems allow a quicker reaction of the coordination
mechanism to changes in the environment. Nevertheless, this does not permit
memorization nor episodic control, which the work of [46] did. Thus, the re-
sults are in good complementarity and in the future it would interesting to test
combinations of these two principles.

The last important result to highlight here is that an efficient coordination
mechanism proposed by [50, 63], and successfully applied to robot navigation and
human-robot interaction scenarios, consists in taking into account not only the
uncertainty but also the computational cost of each learning system. In practice,
the proposed algorithm monitored the average time taken by each system to
make its inference phase before deciding. It learned that the MB system takes
on average 10 times longer than the MF system, in these specific tasks, before
making a decision. As a consequence, the coordination algorithm gave the lead to
the MF system in cases of equal uncertainty, and even in cases of slightly higher
uncertainty in the MF system. As a result, the algorithm mostly relied on the
MF system but transiently and efficiently gave the lead to the MB system, only
when needed. This occurred during initial learning as well as after task changes.
As a consequence, the algorithm could reproduce the nice MB-to-MF sequence
that we discussed in previous sections, both during initial learning and after task
changes. Moreover, with this new coordination principle, the robot could achieve
the same optimal performance as a pure MB system (which was optimal in these
cases) while requiring a cumulated computational cost which was closer to that
of a pure MF system (which achieves a lower bound on computational cost in
these experiments). Thus, the coordination algorithm not only allowed for an
efficient and flexible behavior of the robot in these non-stationary tasks, but it
also permitted to reduce the computational cost of the algorithm controlling the
robot. Finally, the authors also compared their algorithm with a state-of-the-
art deep reinforcement learning algorithm. They found that the latter requires a
very large number of iterations to learn, much more than their proposed MB-MF
coordination algorithm.

Finally, it is interesting to mention that in the meantime, several other re-
search groups throughout the world have also started to test hybrid MB/MF
algorithms for robot learning applications [64–69]. In particular, the deep re-
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inforcement learning community is showing a growing interest for such hybrid
learning algorithms [70–72]. This illustrates the potentially broad interest that
this type of hybrid solutions to reinforcement learning can have in different re-
search communities.

5 Conclusion

This paper aimed at first illustrating current outstanding questions and investi-
gations to better understand and model neural mechanisms for the online adap-
tive coordination of multiple learning strategies in humans and animals. Sec-
ondly, the paper reviewed a series of recent robot learning experiments aimed
at testing such bio-inspired principles for the coordination of model-based and
model-free reinforcement learning strategies.

We discussed the respective advantages and disadvantages of different coordi-
nation mechanisms: on the one hand, mechanisms relying on instantaneous mea-
sures of uncertainty, choice confidence, performance, as well as computational
cost; on the other hand, mechanisms relying on hierarchical learning where a
high-level meta-controller autonomously learns which strategy is the most effi-
cient in each situation.

The robotic experiments discussed here showed that this type of coordination
principle can work efficiently, robustly and at a reduced computational cost in
a variety of robotic scenarios (navigation, human-robot interaction). This is of
particular importance at a time where energy saving is a critical issue for the
planet and to slow down global warming. In contrast, many current machine
learning techniques, especially those relying on deep learning, require tremendous
amounts of energy and long pre-training phases.

Finally, the paper aimed at also illustrating the interest of testing neuro-
inspired models in real robots interacting with the real world so as to generate
novel model-driven predictions for neuroscience and psychology. In the particular
case of the adaptive coordination of model-based and model-free reinforcement
learning strategies, we showed that some situations can induce cooperation be-
tween learning strategies. We moreover showed that not only taking into account
the uncertainty of each learning system but also its computational cost could
work efficiently in a variety of task. This raises the prediction that the mam-
malian brain may also monitor and memorize the average computational cost
(for instance in terms of the duration required for inference) of different learning
strategies in different memory systems, in order to favor those which cost less
when they are equally efficient. This paves the way for novel neuroscience exper-
iments aimed at testing these new model-driven predictions and understanding
the underlying neural mechanisms.
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Devin, Rémi Dromnelle, Antoine Favre-Félix, Benôıt Girard, Christophe Grand,
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