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Abstract. The Factored Markov Decision Process (FMDP) framework is a stan-
dard representation for sequential decision problems under uncertainty where the
state is represented as a collection of random variables. Factored Reinforcement
Learning (FRL) is an Model-based Reinforcement Learning approach to FMDPs
where the transition and reward functions of the problem are learned. In this pa-
per, we show how to model in a theoretically well-founded way the problems
where some combinations of state variable values may not occur, giving rise to
impossible states. Furthermore, we propose a new heuristics that considers as im-
possible the states that have not been seen so far. We derive an algorithm whose
improvement in performance with respect to the standard approach is illustrated
through benchmark experiments.

1 Introduction

Based on the Markov Decision Process (MDP) framework (Sutton & Barto, 1998),
the Factored Markov Decision Process (FMDP) framework (Boutilier et al., 1995) is
the standard representation of sequential decision problems under uncertainty when
the state of the problem can be decomposed as a set of random variables. In this
framework, the state space of a sequential decision problem is represented as a col-
lection of random variables X = {X1, . . . , Xn}. A state is then defined by a vector
x = (x1, . . . , xn) with ∀i, xi ∈ Dom(Xi). FMDPs exploit the structure of the dependen-
cies between variables to represent large MDPs compactly. For each action a, the transi-
tion model is defined by a separate Dynamic Bayesian Network (DBN) model (Dean &
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Kanazawa, 1989). The model Ga is a two-layer directed acyclic graph whose nodes are
{X1, . . . , Xn, X ′

1, . . . , X
′
n} with Xi a variable at time t and X ′

i the same variable at
time t+1. The parents of X ′

i are noted Parentsa(X ′
i). The transition model is quantified

by Conditional Probability Distributions (CPDs), noted P a(X ′
i|Parentsa(X ′

i)), associ-
ated to each node X ′

i ∈ Ga.
The authors of (Boutilier et al., 2000) propose two structured Dynamic Programming

(SDP) algorithms, namely Structured Value Iteration (SVI) and Structured Policy Itera-
tion (SPI). These algorithms and later extensions like SPUDD (Hoey et al., 1999) deal
with the case where there are no synchronic arcs in the DBNs, i.e. ∀i, Parentsa(X ′

i) ⊆
{X1, . . . , Xn} and Parentsa(Xi) = ∅. Thus, in such a model, the X ′

i are independent of
each other conditionally to {X1, . . . , Xn}. The independence assumption results in the
opportunity to compute the joint probability of a collection of variables as a product:
P (X ′|X) = ΠiP (X ′

i|Parentsa(X ′
i)).

In this paper, we focus on the case where the structure and parameters of the FMDP

are learnt from experience, and we address a wider class of problems where particular
combinations of values of variables may not occur. We argue that this situation often
happens in practice and we show through benchmark experiments that modifying stan-
dard algorithms to deal with such “impossible states” is more efficient than just ignoring
this phenomenon. Finally, we show that considering as impossible a state that has never
been seen so far is an efficient heuristic to learn quickly in FMDPs.

The paper is organized as follows. In the next section, we give a brief overview of
SDP algorithms, insisting on the steps where the independence assumption is used and
we give a brief overview of an algorithm that learns the structure of the FMDP while
solving it. Then we show in section 3 how the presence of impossible states can be
modeled and how the algorithms must be modified as a consequence. In section 4, we
examine through benchmark experiments the benefits that can result from our method
when impossible states are present. In section 5, we discuss these benefits depending on
the rate of impossible states, before concluding on the possibility to extend this work in
different directions.

2 Factored Reinforcement Learning

In this section we briefly present structured dynamic programming algorithms and then
SPITI, a model-based reinforcement learning approach dedicated to FMDPs.

2.1 Structured Dynamic Programming

Standard SDP algorithms such as SVI and SPI use decision trees as factored represen-
tation. In the rest of the paper, a function F represented as a decision tree is noted
Tree(F ). SVI and SPI can be seen as an efficient way to perform the Bellman-backup
operation on trees, expressed as follows:

Tree(QV
a )(x) = Tree(R(x, a)) + γT ree(

∑

x′
P (x′|x, a)V (x′)). (1)
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(a) (b) (c)
Reward P (x′

1|X1, X2, a0) P (x′
2|X1, X2, a0)

Fig. 1. A toy example: the tree representation of a reward function and of the transition functions
of binary variables X1 and X2 given an unique action a0. Notations are similar to the ones in
(Boutilier et al., 2000), but in the boolean case we note xi for Xi = true and x̄i for Xi = false.

Fig. 2. P (X ′|X, a0) computed by the PRegress operator from the example of Fig. 1

In SVI and SPI, the Regress(Tree(V ), a) algorithm performs Bellman-backup op-
erations. Inside Regress, PRegress computes Tree(

∑
x′ P (x′|x, a)V (x′)) using the

structure of Tree(P ) and Tree(V ).
Consider the toy example whose reward and transition functions for an unique action

a0 are given in Fig. 1.
From the transition trees, PRegress first computes the Tree(P (X ′|X, a0)) shown

in Fig. 2. This tree represents the individual probabilities of each variable value at t + 1
given the variable values at t. For instance, the rightmost branch of the tree reads as
follows: if X1 and X2 were false, the probability that X ′

1 and X ′
2 are true are 80% and

0% respectively. Note that the probability of one of the values can be omitted in the
representation and inferred from the other probabilities. Furthermore, PRegress only
computes the combinations of values that are necessary to perform regression from the
current value function (see (Boutilier et al., 2000) for details).

Given the tree represented in Fig. 2 and considering that the variables at t + 1 are
independent conditionally to those at t, PRegress computes the joint probabilities as a
product, as shown in Table 1. Note that the table representation is not computed explicitly
in the algorithm: in the more general case with any number of variables and enumerated
values, this calculation is implemented by expanding a tree of all variable values combi-
nations and computing probabilities at the leaves as a product on individual probabilities.

The last step of PRegress computes
∑

x′ P (x′|x, a)V (x′) using the structure shown
in Fig. 3. Then Regress computes Tree(QV

a ) according to equation (1) by performing
the product with γ and the sum with Tree(R(X, a)).
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Table 1. Probabilities for joint variables, resulting from Fig. 2

P (X ′|X, a0) x′
1x

′
2 x′

1x̄2
′ x̄1

′x′
2 x̄1

′x̄2
′

x1x2 100% 0% 0% 0%
x1x̄2 30% 30% 20% 20%
x̄1x2 80% 0% 20% 0%
x̄1x̄2 0% 80% 0% 20%

Fig. 3. Regression with structured representations using the values computed in Table 1. We con-
sider the first iteration where Tree(V ) = Tree(R). Notice that transitions to x̄1x2 and x̄1x̄2 are
summed to x̄1.

On top of Regress, SVI and SPI behave differently. In SVI, the value function
Tree(V ) is computed by merging the set of action-value functions Tree(QV

a ) using
maximization as combination function. It is shown in (Boutilier et al., 2000) that,
given a perfect knowledge of the transition and reward functions and starting with
Tree(V0) = Tree(R), Tree(V ) converges in a finite number of time steps to the opti-
mal value function Tree(V ∗). Then one can extract Tree(π∗) from Tree(V ∗) using a
simple tree-based greedy operator.

In SPI, the process is slightly more complex. Policies Tree(π) and value functions
Tree(V π) are computed iteratively until convergence, making profit of the structure
of Tree(π) to optimize the computation of Tree(V π). We do not detail the algorithm
since ours is based on SVI, but transferring the approach described in section 3 to SPI is
straightforward.

2.2 SPITI

Reinforcement Learning in FMDPs is generally about the case where the structure of the
DBNs are given, but the parameters of the CPDs are learnt from experience. By contrast,
we call Factored Reinforcement Learning (FRL) the case where the structure of the
DBNs itself is learnt.

An implementation of FRL is expressed in the SDYNA framework (Degris et al.,
2006a; Degris et al., 2006b) as a structured version of the DYNA architecture (Sutton,
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1991). In SDYNA, the model of transitions and of the reward are learned from experience
under a compact form. The inner loop of SDYNA is decomposed into three phases:

– Acting: choosing an action according to the current policy, including some explo-
ration;

– Learning: updating the model of the transition and reward functions of the FMDP

from 〈X, a, X ′, R〉 observations;
– Planning: updating the value function Tree(V ) and policy Tree(π) using one

sweep of SDP algorithms.

SPITI is a particular instance of SDYNA using ε-greedy as exploration method, the In-
cremental Tree Induction (ITI) algorithm (Utgoff, 1989) to learn the model of transitions
and reward functions as a collection of decision trees, and the inner loop of SVI as plan-
ning method. An algorithmic description is given in (Degris et al., 2006b).

3 Dealing with Impossible States

The techniques presented so far address the case where there are no synchronic arcs
in the DBNs that represent the structure of FMDPs. On the other extreme, the authors
of (Boutilier et al., 2000) propose to model the case where the variables are not inde-
pendent by adding synchronic arcs between variables at t + 1 and recording the joint
probabilities of all groups of variables that are connected by such synchronic arcs. This
results in more complex, slower and more memory-intensive algorithms, but that can
deal with a much wider class of problems. A more detailed study of that case is pre-
sented in (Boutilier, 1997).

In this paper, we address a class of problems that is intermediate between the “no
synchronic arcs” and the “any synchronic arcs” classes. It corresponds to problems
where the variables at t+1 behave as if they were independent, but some combinations
of values for some variables do not occur in practice, which contradicts the indepen-
dence assumption. We show below how such a situation can be modeled without using
the general class of problems with synchronic arcs in the DBNs.

3.1 Modeling Impossible States

The class of problems we want to address can be modeled with the kind of DBNs shown
in Fig. 4, given that there is one such DBN for each action. In this representation, there
are no synchronic arcs between variables at t + 1, but there are some constraints K on
whether some combinations of variable values are possible or not. K (resp. K ′) stands
for the knowledge of impossible states x (resp. x′). The values of K and K ′ are either
true or false depending on the possibility of the corresponding states.

As we illustrate in the experimental section, without using such constraints, the
Tree(V ) and Tree(QV

a ) structures may represent many states that do not occur in
practice. Dealing with the constraints explicitly is a way to avoid the computational and
memory overhead resulting from this useless information by filtering out all impossible
states in the data structures.

We show below that this filtering can be performed safely just by discarding the
impossible states and normalizing again the probabilities when it is necessary.
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Fig. 4. DBN representation for problems with independent variables and impossible states. K
and K′ stand for constraints stating if a particular combination of values is possible. Variables in
gray are observed. K′ and relevant Xj are used to predict X ′

i for all i. K′ does not necessarily
depend on all X ′

i .

3.2 Impact on Regression

Let us show that the values computed by PRegress taking the constraints into account,
i.e. Σx′P (X ′|x, a, k′).V (x′), are equal to the values one would obtain without taking
these constraints into account, just leaving the impossible states away and normalizing
again the probabilities.

First, with the representation above, the probability distribution of X ′ for a par-
ticular action a can be computed given the values of the variables xi and the value
k′ of the common constraint K ′. Indeed, the distribution of X ′ can be expressed as
P (X ′|x, k′)∝P (k′|X ′, x)P (X ′|x). Furthermore we have P (K ′|X ′, X)=P (K ′|X ′),
since K ′⊥⊥X |X ′. Thus, we have:

P (X ′|x, k′) ∝ P (k′|X ′)P (X ′|x) (2)

and P (k′|X ′) = 0 or 1 depending on the constraint.
If the variables are independent, we have P (X ′|x, a, k′) =

∏
i P (X ′

i|x, a) =∏
i P (X ′

i|parent(X ′
i), a), thus we are in the standard context where the proof of con-

vergence given in (Boutilier et al., 2000) applies.
Now, if we consider impossible states, from (2) we have

∑

x′
P (X ′|x, a, k′) =

∑

x′
Nx,aP (k′|X ′)P (X ′|X, a) (3)

where Nx,a is a normalization factor such that

∀x, ∀a,
∑

x′
Nx,aP (k′|X ′)P (X ′|X, a) = 1.

In (3), there are two categories of terms. If X ′ corresponds to impossible states, we have
P (k′|X ′) = 0 and the corresponding term is removed. Otherwise, the state variables in
X ′ are independent thus P (X ′|x, a, k′) =

∏
i P (X ′

i|parent(X ′
i), a) and P (k′|X ′) =

1. Thus (3) can be simplified as
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Table 2. Transition probabilities for joint variables resulting from Fig. 2, given that x̄1
′x′

2 is
impossible

P (X ′|X, a0, k
′) x′

1x
′
2 x′

1x̄2
′ x̄1

′x̄2
′

x1x2 100% 0% 0%
x1x̄2 37.5% 37.5% 25%
x̄1x̄2 0% 0% 100%

∑

x′
Nx,aP (k′|X ′)

∏

i

P (X ′
i|parent(X ′

i), a))

where only the existing states remain. We are back to the situation where we consider
only possible states with independent variables and the proof from (Boutilier et al.,
2000) applies again.

From the result above, it turns out that, if we take the constraints into account, the
values can be computed in PRegress as in the case without dependencies, just discard-
ing the impossible states and normalizing again so that the sum of probabilities over all
remaining states is 1.

Note that this way to remove impossible states in the computation of PRegress is
the only one which results in the possibility to renormalize. Otherwise, if, for instance,
we remove the leaves corresponding to impossible states in Tree(QV

a ) or Tree(V ),
we cannot perform the normalization since the probability information is lost in these
trees. Furthermore, in addition to being theoretically well-founded, this way of filtering
out impossible states at the heart of the PRegress operator is much more efficient
than filtering later on, since this other solution would result in expanding the number of
leaves in the value tree before reducing it, which is exactly what we want to prevent.

To illustrate our approach, let us consider again the example given in the previous
section. Now, assume that we have some information that the state x̄1x2 is impossible.
As a consequence, P (x̄1

′x′
2) is null and the probability of any state at t + 1 given x̄1x2

is pointless. Thus, the corresponding probabilities in Table 1 must be filtered out and
the remaining values must be renormalized as shown in Table 2. Here again, Table 2
is not computed explicitly, it is represented as a tree as in the standard case, adding in
the algorithm the filtering out of the branches corresponding to impossible states and
finally normalizing again the values at the leaves.

3.3 Impact on Other Tree Operations

After modifying PRegress as presented above, the trees corresponding to (3) are free
from impossible states for all actions.

But then, performing a Bellman-backup according to equation (1) and the other oper-
ations required to run SVI or SPI implies some operations over the resulting trees. As ex-
emplified in Fig. 5, despite the filtering performed in PRegress, simple operations on
several value-related trees (Tree(R), Tree(V ), Tree(QV

a )) can generate leaves repre-
senting impossible states if these trees do not share the same structure. Indeed, whereas
generalization over identical values can “hide” the expression of impossible states in
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Fig. 5. Combining two trees can generate leaves about impossible states (here, x̄1x2 is impossi-
ble)

the source trees, the operations can make these states appear in the resulting trees. As a
result, we must filter impossible states out in such operations.

3.4 IMPSPITI

So far, we have described modifications that apply to SDP algorithms. To evaluate the
impact of these considerations in the context of FRL, we design a new system inspired
from SPITI, called IMPSPITI, that incorporates the following modifications in its Plan-
ning phase:

– in PRegress, when computing the joint probabilities over variable values, the
branches in the tree corresponding to impossible states are discarded and the prob-
abilities are normalized again;

– in the sum Tree(R(x, a)) + γ
∑

x′ Tree(P (x′|X, a))Tree(V (x′)) and the maxi-
mization Tree(V ) = argmaxa Tree(QV

a ), the branches of the resulting tree cor-
responding to impossible states are discarded;

The model of transition and reward functions being learnt from experience, they can-
not contain impossible states, thus the Learning phase does not need to be modified.
Algorithm 1 schematically describes the planning phase if IMPSPITI.

Finally, we need a function to decide that a state is impossible. Since this function is
called at three places in each step of the central iteration, it may result in a significant
time overhead.

Algorithm 1. IMPSPITI- Planning phase
Input : FMDP F [Tree(P (x′|x, a))], Tree(Vt−1);
1. Tree(Qt

a) = addTrees[Tree(R(x,a), γ.PRegress[Tree(Vt), a, Nx,a]] for each action
a ∈ A discarding impossible states in addTrees()
2. Tree(Vt) = MaxMergea[Tree(Qt

a)] discarding impossible states in MaxMerge().
3. Return : Tree(Vt) and {Tree(Qt

a),∀a ∈ A}.

In the experimental section, we will compare two approaches. One consists in using
problem specific expert rules. The second is more general, it consists in building a tree
where the states already visited by the agent are stored as possible. Thus we consider all
states that have not been visited yet as impossible. In the worst case, this representation
would boil down to the complete enumeration of states, but this is also true for the trees
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manipulated in standard SDP algorithms (see (Boutilier et al., 2000) for a discussion). In
most cases of interest, however, this representation will benefit from factorization over
states.

4 Experimental Study

To illustrate the benefits of our approach, we perform experiments on two benchmarks:
MAZE6 and BLOCKS WORLD. The algorithms are coded in C# and run on Intel
Core2Duo 1.80GHz processor with 2Go RAM. All results presented below are averaged
over 50 runs where each run performs 50 episodes limited to 50 steps. The ε-greedy
exploration policy uses ε = 0.1.

4.1 Maze6

Maze environments are standard benchmark problems in the Learning Classifier Sys-
tems (LCSs) literature, LCSs being a heuristic approach to FRL (see (Sigaud & Wilson,
2007)). Mazes are represented by a two-dimensional grid. Each cell can be occupied by
an obstacle, denoted as variable value by a ‘1’, a reward, denoted by a ‘R’, or can
be empty, denoted by a ‘0’. The agent perceives the eight adjacent cells starting with
the cell to the north and coding clockwise. Fig. 6 shows MAZE6, one of such mazes,
designed so that Markov property holds.

For example, an agent located in the cell below the reward perceives ‘R1110011’
whereas an agent located as shown in Fig. 6 perceives ‘00110101’. Although there
are only 37 actual states within the problem, the combinatorial representation results in
38 = 6561 states. The agent can perform eight actions, the movements to adjacent cells.
If a movement leads to a cell containing an obstacle, the action has no effect and there is
no penalty. In the stochastic case, the chosen action may result in a move corresponding
to an immediately adjacent action, with probability 10%. Once the reward position is
reached, the environment provides a reward of 1000 and the episode ends. In that case,
the agent starts again in a randomly chosen empty cell.

Fig. 6. Maze6
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4.2 Blocks World

In the BLOCKS WORLD problem, introduced in (Butz et al., 2002) (see Fig. 7), b blocks
are distributed over a given number s of stacks. At the beginning of each episode, blocks
are distributed randomly. The agent can manipulate the stacks by the means of a gripper
that can either grip or release a block on a certain stack. Additionally, the problem
contains a goal state, which consists in putting a particular number y ≤ b of blocks on
the left hand stack. The stacks are not limited in height. Fig. 7(d) shows the goal in the
problem with b = 4, s = 3, y = 3.

The complexity of BLOCKS WORLD highly depends on the representation chosen to
encode the states. We developed three such representations.

The first is the one used in (Butz et al., 2002). We call it Binary representation.
The agent perceives the current blocks distribution coding each stack with b variables.
One additional variable indicates if the gripper is currently holding a block. In this
representation, many arbitrary combinations of variable values correspond to states that

(a) (b) (c) (d)

Fig. 7. A BLOCKS WORLD scenario, from a random initial position (a) to the goal position (d)

Table 3. BLOCKS WORLD representations of the situation given in Fig. 7 (G stands for gripper)

(a) (b) (c) (d)

BINARY

0000,0000,1110,1 1000,0000,1110,0 1000,0000,1100,1 1110,0000,0000,1

STACKS

STACK1=0 STACK1=1 STACK1=1 STACK1=3
STACK2=0 STACK2=0 STACK2=0 STACK2=0
STACK3=3 STACK3=3 STACK3=2 STACK3=0
G =TRUE G =FALSE G =TRUE G =TRUE

BLOCKS

BLOCK1=S3 BLOCK1=S3 BLOCK1=S3 BLOCK1=G
BLOCK2=S3 BLOCK2=S3 BLOCK2=S3 BLOCK2=S1

BLOCK3=S3 BLOCK3=S3 BLOCK3=G BLOCK3=S1

BLOCK4=G BLOCK4=S1 BLOCK4=S1 BLOCK4=S1
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do not occur in practice. Indeed, all states where a block is lying neither on top of
another block nor on the table are impossible. The more empty cells in the problem, the
more such impossible states.

In the second representation (called Stacks), there is one variable per stack giving
the number of blocks it contains, and one additional variable indicating if the gripper is
holding a block. The impossible states are the states where the total number of blocks is
not b. Thus, in that case, an ad hoc way to decide if a state is possible consists in simply
summing the represented blocks and comparing to b.

Finally, the third representation (called Blocks), there are b variables whose values
are given by the gripper or stack where the corresponding block is currently placed. The
only impossible states are the ones where several blocks are in the gripper, which gives
a straightforward ad hoc rule to decide if a state is possible. The major drawback of
this representation is that, blocks being identical, there are many ways to represent the
same state of the problem. For instance, {block1=s1, block2=s2, . . .} and {block1=s2,
block2=s1, . . .} represent the same configuration and there are 12 different ways to
represent Fig. 7(c). This results in a greater number of possible states than necessary,
thus in more complex value and policy trees structures.

Table 3 shows an example of these three representations with b = 4, s = 3, y = 3.

4.3 Empirical Results

Table 4 recaps the performance on MAZE6 of SPITI and IMPSPITI and Fig. 8 shows
their convergence speed in number of episodes considering the number of steps needed
to perform each episode.

IMPSPITI clearly outperforms SPITI both in the deterministic and in the stochastic
case: it converges faster in time and in number of learning episodes, but also requires
less memory to represent value and policy functions. More precisely, IMPSPITI only
considers the 37 states that are actually possible (the variance in value and policy size
comes from cases where the run ended before all states were explored).

Fig. 9 shows on different BLOCKS WORLD problems the value function size, com-
puted as the number of leaves in Tree(V ) after 50 episodes.

Table 5 gives the rate of impossible states derived from the number of states shown
in labels in Fig. 9 and the time required to perform one learning step by SPITI and
IMPSPITI respectively. IMPSPITI uses trees to represent impossible states (the time with
the ad hoc rules described in section 4.2 is indicated between parentheses).

Fig. 10 shows the convergence speed in number of episodes for the BLOCKS WORLD

of size 4-3-4, that is a representative middle size problem. IMPSPITI takes less episodes

Table 4. MAZE6 performance (cost in memory and time)

Value size Policy size Time/step(sec)

SPITI det 214 ± 10 241 ± 4 1.7 ± 0.8
SPITI stoc 252 ± 14 240 ± 12 3.7 ± 1.2
IMPSPITI det 35 ± 2 35 ± 2 0.1 ± 0.08
IMPSPITI stoc 35 ± 2 35 ± 2 0.24 ± 0.1
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Fig. 8. Convergence over episodes on MAZE6

(A) BINARY (B) STACKS (C) BLOCKS

Fig. 9. BLOCKS WORLD: value function size as a function of the size of the problem. Labels on
points indicate this value / the total number of states considered. Note the log scale for Binary.

(A) BINARY (B) STACKS (C) BLOCKS

Fig. 10. BLOCKS WORLD performance along episodes (size 4-3-4). We run 70 episodes with
Blocks to wait for convergence.

than SPITI to reach the optimal policy with all representations. This result is explained
by the fact that IMPSPITI uses smaller trees with a simpler structure, therefore it takes
less steps to propagate values over the trees. But note that, as expected, the difference
is smaller when the rate of impossible states is smaller. Note also that, even when there
are very few impossible states as is the case with the Blocks representation, the policy
improves faster with IMPSPITI.

Now, comparing the performance in time on a single step from Table 5, in Bi-
nary representation, where the rate of impossible states grows very fast, IMPSPITI
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Table 5. BLOCKS WORLD: rate of impossible states and time to perform one step (in seconds).
A “-” indicates that the value could not be obtained after three days of computation.

BINARY STACKS BLOCKS

B-S-Y SPITI IMPSPITI SPITI IMPSPITI SPITI IMPSPITI

3-3-3
% IMP. 98.5% 87.5% 15.6%
TIME 0.28 ±0.03 0.04 ± 0.01 0.05 ±0.02 0.01 (0.01) 0.04 0.03 (0.03)

4-3-4
% IMP. 99.7% 90% 26.1%
TIME 2.9 ± 0.4 0.08 ± 0.01 0.06 ±0.02 0.01 (0.01) 0.17 ± 0.02 0.18 ± 0.01 (0.13 ± 0.01)

4-4-3
% IMP. >99.99% 95.6% 18%
TIME 34 ± 7 1.2 ± 0.2 0.13 ± 0.06 0.02 (0.02) 0.34 ± 0.2 0.9± 0.07 ( 0.5 ± 0.03)

5-4-4
% IMP. >99.99% 96.5% 26.3%
TIME - 2.6 ± 0.3 0.2 ± 0.09 0.05 (0.04) 2.6 ± 0.3 6.5 ± 0.9 (3.1 ± 0.2)

unquestionably outperforms SPITI in time and memory use. With the Stacks represen-
tation, both the size of the problem and the rate of impossible states grows slower, thus
the time difference between SPITI and IMPSPITI keeps small. Finally, the rate of im-
possible states is much smaller in the Blocks representation, therefore both algorithms
perform similarly for small BLOCKS WORLDs and SPITI takes less time per step than
IMPSPITI as the problem size grows, due to the time overhead required to check for the
existence of states. This is also true using ad hoc rules to detect impossible states, even
if the overhead is smaller in that case.

5 Discussion

The first message of this paper is that, although using a factored representation in re-
inforcement learning results in the possibility to address larger problems, designing
a factored representation so that it does not artificially increase the number of con-
sidered states may be very difficult. Consider the MAZE6 problem, where there are
only 37 states, but a somewhat standard factored representation may result in 6561 po-
tential states. This problem is an idealization of a standard robot navigation problem
where, given usual robot sensors, one could not say in advance which sensory values
cannot occur simultaneously. Similarly, if we take the BLOCKS WORLD problem, it
proved difficult to design a representation that would fit the number of actual states.
The Blocks representation results in fewer impossible states, but at the price of some
redundancy that makes it very inefficient for larger problems (for instance, with a size
6-5-5 problem, we have 34375 possible states represented whereas there are only 334
actual states). We have shown that IMPSPITI was able to stick to the number of possible
states of the problem given a representation, resulting in the possibility to address a
much wider class of FMDPs than standard SDP methods.

Our second message is about the time overhead resulting from the necessity to check
whether a state is possible. Considering the computation time per step and the number
of steps required to converge, IMPSPITI always performs faster if there are enough im-
possible states. More precisely, as illustrated with the Blocks representation, the larger
the problem, the larger the necessary rate of impossible states, since the tree of possible
states will grow larger, resulting in a large overhead. However, using domain specific
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rules to detect impossible states generally results in a further gain in speed, but it is at
the price of generality.

Finally, the fact that the policy improves faster with IMPSPITI than with SPITI even
when there are very few impossible states, as is the case with the Blocks representation,
tends to indicate that considering states as impossible until they are seen is an effi-
cient heuristics even in the absence of actually impossible states. This heuristics itself
will deserve further analyses. In particular, it would be of much interest to study the
potential interactions between this pessimistic heuristics and using efficient optimistic
exploration strategies such as “Optimism in the Face of Uncertainty” (Szita & Lőrincz,
2008) that drives the agent towards unseen states. At first glance, these heuristics are
contradictory, since in the former we do not want to represent impossible states which
we do not distinguish from unseen states, whereas in the latter we want to attribute a
large value to unseen states, thus we need to represent them.

6 Conclusion

We have shown that there exists a practically relevant class of FMDPs between the “no
synchronic arcs” and the “any synchronic arcs” classes that corresponds to problems
where some combinations of state variable values do not occur. Though standard SDP

algorithms such as SVI and their derivatives such as SPITI can be applied to this class of
problems, we have shown that modifying the algorithm to take the presence of impos-
sible states into account can result in significant performance improvements. Moreover,
we have shown that, in the context where an agent has to explore its environment to
learn its structure, considering as impossible the states that have not yet been encoun-
tered is also beneficial to the performance.

Note that the approach described in section 3 can be applied to other standard SDP

algorithms. Here, we focused on one particular FRL method, namely SPITI, but the im-
pact on other instances of SDYNA using SPUDD or Guestrin’s linear programming ap-
proach (Guestrin et al., 2003) remains to be studied. Furthermore, we want to compare
IMPSPITI with XACS (Butz et al., 2002), an Anticipatory Learning Classifier System
endowed with most FRL systems properties, but which uses genetic algorithm heuris-
tics instead of SDP and incremental tree induction methods. A previous comparison
between XACS and SPITI (Sigaud et al., 2009) has shown that XACS can deal efficiently
with impossible states, but a closer comparison between the mechanisms of IMPSPITI

presented here and those of XACS remains to be performed.
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