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Abstract

Action selection, the problem of choosing what to do next, is central to any autonomous

agent architecture. We use here a multidisciplinary approach at the convergence of neuro-

science, dynamical systems theory and autonomous robotics, in order to propose an effi-

cient action selection mechanism based on a new model of the basal ganglia. We first de-

scribe new developments of contraction theory regarding locally projected dynamical sys-

tems. We exploit these results to design a stable computational model of the cortico-baso-

thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neu-

ral projections, which participate in performing accurate selection. Finally, the efficiency

of this model as an autonomous robot action selection mechanism is assessed in a standard

survival task. The model exhibits valuable dithering avoidance and energy-saving proper-
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ties, when compared with a simple if-then-else decision rule.

Key words: action selection, basal ganglia, computational model, autonomous robotics,

contraction analysis
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1 Introduction

Action selection is the problem of motor resource allocation an autonomous agent

is faced with, when attempting to achieve its long-term objectives. These may vary

from survival and reproduction to delivering letters to researchers’ offices, depend-

ing on the nature of the considered agent (animal, robot, etc.). Action selection is

a topic of interest in various disciplines, including ethology, artificial intelligence,

psychology, neuroscience, autonomous robotics, etc. We address here the ques-

tion of action selection for an autonomous robot, using a computational model of

brain regions involved in action selection, namely the cortico-baso-thalamo-cortical

loops. In order to avoid unwanted dynamical behaviors resulting from a highly

recurrent network, we use contraction analysis (Lohmiller and Slotine, 1998) to

obtain a rigorous proof of its stability. The efficiency of this action selection mech-

anism (ASM) is assessed using a standard minimal survival task in a robotic simu-

lation.
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[Fig. 1 about here.]

The basal ganglia are a set of interconnected subcortical nuclei common to all verte-

brates and involved in numerous processes, from motor functions to cognitive ones

(Mink, 1996; Middleton and Strick, 1994). Their role is interpreted as a generic se-

lection circuit, and they have been proposed to form the neural substrate of action

selection (Mink, 1996; Krotopov and Etlinger, 1999; Redgrave et al., 1999). The

basal ganglia are included in cortico-baso-thalamo-cortical loops (Fig. B.1), five

main loops have been identified in primates (Alexander et al., 1986, 1990; Kimura

and Graybiel, 1995): one motor, one oculomotor, two prefrontal and one limbic

loop. Within each of these loops, the basal ganglia circuitry is organized in inter-

acting channels, among which selection occurs. Depending on the loop considered,

this selection may concern, for example, the target of an upcoming saccadic move-

ment, the target of reaching movement or the piece of information to be stored in

working memory. The output nuclei of the basal ganglia are inhibitory and toni-

cally active, and thus maintain their targets under sustained inhibition. Selection

occurs via disinhibition (Chevalier and Deniau, 1990): the removal of the inhibi-

tion exerted by one channel on its specific target circuit allows the activation of that

circuit. When considering action selection, the basal ganglia channels are thought

to be associated to competing action primitives. Given sensory and motivational

inputs, the basal ganglia are thus supposed to arbitrate among these actions and to

allow the activation of the winner by disinhibiting the corresponding motor circuits.

The considered network contains a large number of closed loops, from the large

cortico-baso-thalamo-cortical loop, to loops formed by the interconnections be-

tween nuclei within the basal ganglia and between the thalamus and the cortex.

A system with such a structure may exhibit varied dynamical behaviors, some of

which should be avoided by an ASM, like reaching a standstill state which doesn’t
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depend anymore on the external input. This motivates the use of a theoretical frame-

work to study the dynamics of basal ganglia models. We propose to use contraction

analysis (Lohmiller and Slotine, 1998) in order to guide the design of a new model

of the basal ganglia whose stability can be formally established. Contraction anal-

ysis is a theoretical tool used to study the dynamic behavior of non-linear systems.

Contraction properties are preserved through a number of particular combinations,

which is useful for a modular design of models.

Numerous computational models of the BG have been proposed in order to inves-

tigate the details of the operation of the basal ganglia disinhibition process (Gillies

and Arbruthnott, 2000; Gurney et al., 2004b, for recent reviews). Among these,

the model proposed by Gurney, Prescott and Redgrave (2001a; 2001b) (henceforth

the GPR model) has been successfully tested as an action selection mechanism

for autonomous agents (Montes-Gonzalez et al., 2000; Girard et al., 2003, 2005a;

Prescott et al., 2006). In particular, it was shown to be able to solve a minimal sur-

vival task, and, compared with a simpler winner-takes-all mechanism, displayed

dithering avoidance and energy-saving capabilities.

We present here an action selection mechanism based on a contracting computa-

tional model of the basal ganglia (or CBG). In order to adapt the contraction theory

to the analysis of rate-coding artificial neural networks, we first extend it to locally

projected dynamical systems (section 2). Using the resulting neuron model and

contraction constraints on the model’s parameters, we build a computational model

of the basal ganglia including usually neglected neural connections (section 3). We

then check the selection properties of the disembodied model and compare them to

those of the GPR, so as to emphasize the consequences of using contraction analy-

sis (section 4). We finally test its efficiency in a survival task similar to the one used

to evaluate the GPR (Girard et al., 2003), and emphasize its dithering avoidance
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and energy-saving properties by comparing it to a simple if-then-else decision rule

(section 5).

Preliminary versions of the basal ganglia computational model were presented in

(Girard et al., 2005b, 2006).

2 Nonlinear contraction analysis for rate coding neural networks

Basically, a nonlinear time-varying dynamic system is called contracting if initial

conditions or temporary disturbances are forgotten exponentially fast, that is, if

any perturbed trajectory returns to its nominal behavior with an exponential con-

vergence rate. Contraction is an extension of the well-known stability analysis for

linear systems. It has the desirable feature of being preserved through hierarchi-

cal and particular feedback combinations. Thus, as we will see below, contraction

analysis is an appropriate tool to study stability properties of rate coding neural

networks.

In addition, when a system is contracting, it is sufficient to find a particular bounded

trajectory to be sure that the system will eventually tend to this trajectory. Thus

contraction theory is a convenient way to analyze the dynamic behavior of a system

without linearized approximations.

2.1 Contraction theory

We summarize the differential formulation of contraction analysis presented in

(Lohmiller and Slotine, 1998). Contraction analysis is a way to prove the expo-

nential stability of a nonlinear system by studying the properties of its Jacobian.
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Consider a n-dimensional time-varying system of the form:

ẋ(t) = f(x(t), t) (1)

where x ∈ R
n and t ∈ R+ and f is a n × 1 non-linear vector function which is

assumed in the rest of this paper to be real and smooth, in the sense that all required

derivatives exist and are continuous. This equation may also represent the closed-

loop dynamic of a neural network model of a brain structure. We recall below the

main result of contraction analysis (see Lohmiller and Slotine, 1998, for a proof

and more details).

Theorem 1 Consider the continuous-time system (1). If there exists a uniformly

positive definite metric

M(x, t) = Θ(x, t)TΘ(x, t)

such that the generalized Jacobian

F = (Θ̇ + ΘJ)Θ−1

is uniformly negative definite, then all system trajectories converge exponentially

to a single trajectory with convergence rate |λmax|, where λmax is the largest eigen-

value of the symmetric part of F.

Recall that a matrix A(x, t) is uniformly positive definite if there exists β > 0 such

that

∀x, t λmin(A(t)) ≥ β
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2.2 Neural networks and locally projected dynamical systems

Networks of leaky integrators are widely used to model the behavior of neuronal

assemblies (Dayan and Abbott, 2001). A leaky integrator network is usually de-

scribed by the following set of equations

τiẋi = −xi(t) +
∑

j 6=i

Kjixj(t) + I(t)

where x(t) is the synaptic current of a neuron, τi its time constant, Kji the synaptic

projection weight from neuron j to neuron i and I(t) the input coming from an

external source. Next, x(t) is converted into a non-negative firing rate y(t) using a

transfer function, for instance

y(t) = max(x(t), 0) = [x(t)]+

Another way to enforce nonnegativity of the firing rate can be achieved through lo-

cally projected dynamical systems (lPDS in short). These systems were introduced

in (Dupuis and Nagurney, 1993) and further analyzed in (Zhang and Nagurney,

1995). Related ideas can be found in the standard parameter projection method in

adaptive control (Slotine and Coetsee, 1986; Ioannou and Sun, 1996). A lPDS is

given by

ẋ = ΠΩ(x, f(x, t)) (2)

where Ω is a convex subset of the state space and ΠΩ is the vector-projection

operator on Ω given by

ΠΩ(x,v) = lim
h→0+

PΩ(x + hv) − x

h

In the above equation, PΩ denotes the point-projection operator on the convex Ω
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defined as

PΩ(x) = argminy∈Ω‖x − y‖

Intuitively, if x is in the interior of Ω then ΠΩ(x,v) = v. If x is on the boundary of

Ω, then ΠΩ(x,v) is the maximal component of v that allows the system to remain

within Ω. In particular, it is easy to see that any trajectory starting in Ω remains in

Ω.

Note that equation (2) does not define a classical ordinary differential equation

since its right-hand side can be discontinuous due to the projection operator. How-

ever, under some conditions on f and Ω (similar to the Cauchy-Lipschitz conditions

for classical ordinary differential equations, see (Dupuis and Nagurney, 1993) and

(Filippov, 1963) for more details), existence, uniqueness and some qualitative prop-

erties can be established for the solutions of (2). For our purpose, we recall here that

any solution x of (2) is continuous and right-differentiable for all t. In the rest of

this article, we make the additional assumption that the set of time instants when

x(t) is not differentiable has measure zero.

Within the above framework, the dynamics of a neural network can now be given

in matrix form as

ẋ = ΠHn
(x,Wx + I(t)) (3)

where x(t) = (x1(t), . . . , xn(t))T is the states of the neurons, W is the n×n matrix

whose diagonal elements represent the leaking rate of the neurons and whose non-

diagonal elements represent the synaptic projection weight, I(t) is the vector of

external inputs. Finally, Hn is a regular n-cube defined as follows

Definition 1 A regular n-cube Hn is a subset of R
n defined by

Hn = {(x1, . . . , xn) ∈ R
n : ∀i, mi ≤ xi ≤ Mi}

9



where m1, . . . , mn, M1, . . . , Mn ∈ R.

Intuitively, a regular n-cube is a n-cube whose edges are parallel to the axes.

In practice, networks of leaky integrators described by lPDS as above and their

classical counterparts with transfer functions show very similar behavior. However,

the stability properties of lPDS networks can be rigorously established through con-

traction theory (see next section), which makes them interesting from a theoretical

viewpoint.

2.3 Contraction analysis of locally projected dynamical system on regular n-

cubes

Contraction analysis for systems subject to convex constraints has already been

discussed in Lohmiller and Slotine (2000). However, in that work, the projection

applied to constrain the system in the convex region depends on the metric which

makes the original system contracting. Thus, we cannot expect to use this result

here as our projection operator must not depend on the neural network

Since the contraction condition is local, a lPDS can only be contracting if the orig-

inal, un-projected, system is contracting within Ω. The converse implication is not

true in general, because the projection operator can deeply modify the system’s be-

havior along the boundary of Ω. We now introduce a few definitions in order to be

able to state this converse implication in some particular cases.

Definition 2 Let x ∈ δΩ where δΩ denotes the boundary of Ω. The set of inward

normals toΩ at x is defined as

NΩ(x) = {n | nT (x − y) ≤ 0, ∀y ∈ Ω}
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If x ∈ Ω − δΩ then we set NΩ(x) = {0}.

Definition 3 A metricM is said to be compatiblewith a convex setΩ if there exists

a coordinate transformΘ such thatΘTΘ = M and

∀x ∈ δΩ, ∀n ∈ NΩ(x) Θn ∈ NΘΩ(Θx)

In this case, we say thatΘ is a square-root ofM which is compatible with Ω.

We can give a simple sufficient condition for a metric to be compatible with a

regular n-cube.

Proposition 1 Any diagonal positive definite metricM is compatible with any reg-

ular n-cube Hn.

Proof Let x = (x1, . . . , xn)T ∈ δHn. An inward normal n = (n1, . . . , nn)T to Hn

at x is characterized by























































ni ≥ 0 if xi = mi

ni ≤ 0 if xi = Mi

ni = 0 if mi < xi < Mi

Since M is diagonal and positive definite, one has M = diag(d2
1, . . . , d

2
n) with

di > 0. Consider the coordinate transform Θ = diag(d1, . . . , dn). Clearly, ΘTΘ =

M and ΘHn is a regular n-cube with minimal values d1m1, . . . , dnmn and maximal

values d1M1, . . . , dnMn. It follows from the characterization above that Θn =

( d1n1, . . . , dnnn)T ∈ NΘHn
(Θx)

We also need another elementary result.
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Lemma 1 Let x ∈ Ω and v ∈ R
n. There exists n(x,v) ∈ NΩ(x) such that

ΠΩ(x,v) = v + n(x,v)

Proof Let y ∈ Ω. We need to show that Ay = (ΠΩ(x,v) − v)T (x − y) ≤ 0. By

definition of ΠΩ, one has

Ay = lim
h→0+

1

h
(PΩ(x + hv) − (x + hv))T (x − y)

Next, introduce the terms PΩ(x + hv) and hv into (x − y)

Ay = limh→0+
1

h
[ (PΩ(x + hv) − (x + hv))T (PΩ(x + hv) − y)+

(PΩ(x + hv) − (x + hv))T (x + hv − PΩ(x + hv))+

(PΩ(x + hv) − (x + hv))T (−hv)]

The first term in the above equation is non-positive by property of the point-projection

operator. The second term is the negative of a distance and thus is also non-positive.

As for the third term, observe that

lim
h→0+

(PΩ(x + hv) − (x + hv))Tv = (PΩ(x) − x)Tv = 0

since x ∈ Ω.

We can now state the following theorem

Theorem 2 Let ẋ = f(x, t) be a dynamical system which is contracting in a con-

stant metricM compatible with a convex setΩ. Then the lPDS ẋ = ΠΩ(x, f(x, t))

is also contracting in the same metric and with the same contraction rate.

Proof Let Θ be a square-root of M compatible with Ω. Consider z = Θx. By
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lemma 1, the system z is described by

ż = ΘΠΩ(x, f(x)) = F(z) + Θn(x, f(x)) (4)

where F(z) = Θf(Θ−1z).

Consider two particular trajectories of (4) z1 and z2. Denote by ∆ the squared

distance between z1 and z2

∆(t) = ‖z1(t) − z2(t)‖2 = (z1(t) − z2(t))
T (z1(t) − z2(t))

When ∆ is differentiable, we have

d
dt

∆ = 2(z1 − z2)
T (ż1 − ż2)

= 2(z1 − z2)
T (F(z1) + Θn(x1, f(x1)) − (F(z2) + Θn(x2, f(x2))))

Since the metric is compatible with Ω, Θn(xi, f(xi)) ∈ NΘΩ(zi) for i = 1, 2.

Next, by definition of inward normals, we have (z1 − z2)
TΘn(x1, f(x1)) ≤ 0 and

−(z1 − z2)
TΘn(x2, f(x2)) ≤ 0, from which we deduce

d
dt

∆ ≤ 2(z1 − z2)
T (F(z1) − F(z2)))

≤ −2λ∆(t)

where λ > 0 is the contraction rate of f in the metric M.

Since the set of time instants when ∆(t) is not differentiable has measure zero (see

section 2.2), one has

∀t ≥ 0, ∆(t) =
∫ t

0

(
d

dt
∆)dt ≤ −2λ

∫ t

0

∆(s)ds

which yields by Grönwall’s lemma

∀t ≥ 0, ∆(t) ≤ ∆(0)e−2λt
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i.e.

∀t ≥ 0, ‖z1(t) − z2(t)‖ ≤ ‖z1(0) − z2(0)‖e−λt

2.4 Combination of contracting systems

One of our motivations for using contraction theory is that contraction properties

are preserved under suitable combinations (Lohmiller and Slotine, 1998). This al-

lows both stable aggregation of contracting systems, and variation or optimiza-

tion of individual subsystems while preserving overall functionality (Slotine and

Lohmiller, 2001). We present here three standard combinations of contracting sys-

tems which preserve both contraction of the system and diagonality of the metric.

Then, constructing our neural network as a lPDS using only those three combina-

tions will give rise to a contracting system in a diagonal metric.

2.4.1 Negative feedback combination

Consider two coupled systems

ẋ1 = f1(x1,x2, t)

ẋ2 = f2(x1,x2, t)

Assume that system i (i = 1, 2) is contracting with respect to Mi = ΘT
i Θi, with

rate λi. Assume furthermore that the two systems are connected by negative feed-

back (Tabareau and Slotine, 2006). More precisely, the Jacobian matrices of the

couplings verify

Θ1J12Θ
−1

2 = −kΘ2J
⊤
21Θ

−1

1
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with k a positive constant. Hence, the Jacobian matrix of the unperturbed global

system is given by

J =

















J1 −kΘ−1
1 Θ2J

⊤
21Θ

−1
1 Θ2

J21 J2

















Consider the coordinate transform

Θ =

















Θ1 0

0
√

kΘ2

















associated to the metric M = ΘT Θ > 0. After some calculations, one has

(

ΘJΘ−1
)

s
=

















(

Θ1J1Θ
−1
1

)

s
0

0
(

Θ2J2Θ
−1
2

)

s

















≤max(−λ1,−λ2)I (5)

The augmented system is thus contracting with respect to the metric M, with rate

min(λ1, λ2).

2.4.2 Hierarchical combination

We first recall a standard result in matrix analysis (Horn and Johnson, 1985). Let

A be symmetric matrix in the form

A =

















A1 AT
21

A21 A2
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Assume that A1 and A2 are definite positive. Then A is definite positive if

σ2(A21) < λmin(A1)λmin(A2)

where σ(A21) denotes the largest singular value of A21. In this case, the smallest

eigenvalue of A satisfies

λmin(A) ≥ λmin(A1) + λmin(A2)

2
−

√

√

√

√

(

λmin(A1) − λmin(A2)

2

)2

+ σ2(A21)

Consider now the same set-up as in section 2.4.1, except that the connection is now

hierarchical and upper-bounded. More precisely, the Jacobians of the couplings

verify

J12 = 0, σ2(Θ2J21Θ
−1

1 ) ≤ K

Hence, the Jacobian matrix of the augmented system is given by

J =

















J1 0

J21 J2

















Consider the coordinate transform

Θǫ =

















Θ1 0

0 ǫΘ2

















associated to the metric Mǫ = ΘT
ǫ Θǫ > 0. After some calculations, one has

(

ΘJΘ−1
)

s
=

















(

Θ1J1Θ
−1
1

)

s

1

2
ǫ(Θ2J21Θ

−1
1 )T

1

2
ǫΘ2J21Θ

−1
1

(

Θ2J2Θ
−1
2

)

s
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Set now ǫ =
√

2λ1λ2

K
. The augmented system is then contracting with respect to the

metric Mǫ, with rate λ verifying

λ ≥ 1

2
(λ1 + λ2 −

√

λ2
1 + λ2

2))

2.4.3 Small gains

In this section, we require no specific assumption on the form of the couplings

J =

















J1 J12

J21 J2

















As for negative feedback, consider the coordinate transform

Θk =

















Θ1 0

0
√

kΘ2

















k > 0

associated to the metric Mk = ΘT
k Θk > 0. After some calculations, one has

(

ΘkJΘ−1

k

)

s
=

















(

Θ1J1Θ
−1
1

)

s
AT

k

Ak

(

Θ2J2Θ
−1
2

)

s

















where Ak = 1

2

(√
kΘ2J21Θ

−1
1 + 1√

k

(

Θ1J12Θ
−1
2

)T
)

. Following the result stated

at the beginning of section 2.4.2, if

min
k

σ2(Ak) < λ1λ2
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then the augmented system is contracting with respect to the metric Mk for some

k, with rate λ verifying

λ ≥ λ1 + λ2

2
−

√

√

√

√

(

λ1 − λ2

2

)2

+ min
k

σ2(Ak)

3 Model description

Rather than using standard leaky-integrator rate-coding neurons, we use the very

similar local projected dynamical system model defined by equation 3, where each

component of the state vector x is an artificial rate-coding neuron representing the

discharge rate of populations of real neurons. Each competing BG channel in each

nucleus is represented by one such neuron, and the corresponding thalamic nucleus

and cortical areas are also subdivided in identical channels (Fig. B.2). The conver-

gence of cortical sensory inputs on the striatum channels is encoded, for simplicity,

by a vector of saliences (one salience per channel). Each salience represents the

propensity of its corresponding channel to be selected. Each behavior in competi-

tion is associated to a specific channel and can be executed if and only if its level

of inhibition decreases below a the inhibition level at rest yGPi
Rest (ie. the SNr/GPi

output when the salience vector is null).

[Fig. 2 about here.]

The main difference of our architecture with the recent GPR proposal (Gurney

et al., 2001a) is the nuclei targeted by the external part of the globus pallidus (GPe)

and the nature of these projections. In our model, the GPe projects to the subthala-

mic nucleus (STN), the internal part of the globus pallidus (GPi) and the substantia

nigra pars reticulata (SNr), as well as to the striatum, as documented in (Staines

et al., 1981; Bevan et al., 1998; Kita et al., 1999). Moreover, the striatal terminals
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target the dendritic trees, while pallidal, nigral and subthalamic terminals form per-

ineuronal nets around the soma of the targeted neurons (Sato et al., 2000). This

specific organization allows GPe neurons to influence large sets of neurons in GPi,

SNr and STN (Parent et al., 2000), thus the sum of the activity of all GPe channels

influences the activity of STN and GPi/SNr neurons (equation 9 and 11), while

there is a simple channel-to-channel projection to the striatum (equation 6 and 7).

The striatum is one of the two input nuclei of the BG. It is mainly composed of

GABAergic (inhibitory) medium spiny neurons (MSN). As in the GPR model, we

distinguish among them, those with D1 and D2 dopamine receptors and modulate

the input generated in the dendritic tree by the dopamine level γ, which here en-

compasses salience, frontal cortex feedback and GPe projections.

Using the formulation of equation 3, the ith neuron (i ∈ [1, N ], with N the number

of channels) of the D1 and D2 sub parts of the striatum are defined as follows

(Wx + I(t))D1i
= 1

τ

(

(1 + γ)(wD1

F C
xFC

i − wD1

GPe
xGPe

i + wD1

S
Si(t))

−wD1

F S
xFS + ID1

)

(6)

(Wx + I(t))D2i
= 1

τ

(

(1 − γ)(wD2

F C
xFC

i − wD2

GPe
xGPe

i + wD2

S
Si(t))

−wD2

F S
xFS + ID2

)

(7)

where S(t) is the salience input vector, and where the negative constant input ID1

and ID2, which keep the neurons silent when the inputs are not strong enough,

model the up-state/down-state property of the MSNs.

The striatum also contains a small proportion of phenotypically diverse interneu-

rons (Tepper and Bolam, 2004). We include here the fast spiking GABAergic in-

terneurons (FS), that we model roughly as single population exerting feedforward
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inhibition on the MSN (Tepper et al., 2004), and modulated by GPe feedback (Be-

van et al., 1998)

(Wx + I(t))FS = 1

τ
F S

∑N
j=1

(

wF S

F C
xFC

j − wF S

GPe
xGPe

j + wF S

S
Sj(t)

)

(8)

The sub-thalamic nucleus (STN) is the second input of the basal ganglia and also

receives diffuse projections from the GPe, as explained above. Its glutamatergic

neurons have an excitatory effect and project to the GPe and GPi. The resulting

input of the STN neuron is given by

(Wx + I(t))STNi
= 1

τ
STN

(

wSTN

F C
xFC

i − wSTN

GPe

∑N
j=1 xGPe

j + ISTN

)

(9)

where the constant positive input ISTN models the tonic activity of the STN.

The GPe is an inhibitory nucleus, it receives channel-to-channel afferents from the

whole striatum (Wu et al., 2000), and a diffuse excitation from the STN

(Wx + I(t))GPei
= 1

τ

(

−wGPe

D1
xD1

i − wGPe

D2
xD2

i + wGPe

STN

∑N
j=1 xSTN

j + IGPe

)

(10)

where the constant positive input IGPe models the tonic activity of the GPe.

The GPi and SNr are the inhibitory output nuclei of the BG, which keep their tar-

gets under inhibition unless a channel is selected. They receive channel-to-channel

projections from the D1 striatum and diffuse projections from the STN and the GPe

(Wx + I(t))GPii = 1

τ

(

−wGPi

D1
xD1

i + wGPi

STN

∑N
j=1 xSTN

i

−wGPi

GPe

∑N
j=1 xGPe

j + IGPi

)

(11)

where the constant positive input IGPi models the tonic activity of the GPi/SNr.
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Finally, the thalamus (TH) forms an excitatory loop with the frontal cortex (FC),

these two modules representing different thalamus nuclei and cortical areas, de-

pending on the cortico-baso-thalamo-cortical loop considered. The thalamus is more-

over under a global regulatory inhibition of the thalamic reticular nucleus (TRN,

represented by a single population of neurons) and a channel-specific selective in-

hibition from the basal ganglia

(Wx + I(t))THi
= 1

τ
TH

(

wTH

F C
xFC

i − wTH

TRN
xTRN − wTH

GPi
xGPi

)

(12)

(Wx + I(t))FCi
= 1

τ
F C

(

wF C

S
Si + wF C

TH
xTH

i

)

(13)

(Wx + I(t))TRN = 1

τ
TRN

(

∑

i w
TRN

F C
xFC

i + wTRN

TH
xTH

i

)

(14)

This model keeps the basic off-center on-surround selecting structure, duplicated

in the D1-STN-GPi/SNr and D2-STN-GPe sub-circuits, of the GPR. However, the

channel specific feedback from the GPe to the Striatum helps sharpening the selec-

tion by favoring the channel with the highest salience in D1 and D2. Moreover, the

global GPe inhibition on the GPi/SNr synergetically interacts with the STN excita-

tion in order to limit the amplitude of variation of the inhibition of the unselected

channels. The inhibitory projections of the BG onto the thalamo-cortical excitatory

loop limits the amplification of the unselected channels and thus favors a selective

amplification of the winning channels. In such an architecture, the frontal cortex

preserves the information from all channels but amplifies selectively the winning

channel, in sort of attention “spotlight” process, while the subcortical target circuits

of the BG are under very selective inhibition, ensuring that motor commands do not

interfere.
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4 Disembodied model results

We first analyze the contraction of contracting basal ganglia model (CBG) and its

selection properties in simple disembodied tests before evaluating it as an ASM in

a simulated robot.

[Table 1 about here.]

Similarly to the simulations made by Gurney et al. (2001b), we used a 6-channel

model. The parameters of the model were hand-tuned in order to obtain a selective

system and respecting the local contraction constraints defined below, their values

are summarized in table B.1. The simulation was programmed in C++, using the

simple Euler approximation for integration, with a time step of 1ms.

4.1 Contraction analysis of the model

According to the theory developed in section 2.3, our model is contracting if the

non projected dynamics (which is linear) is contracting in a diagonal metric. To

find this metric, we will use the three combinations presented in section 2.4 that

preserve diagonality.

Remark that each separated nucleus is trivially contracting in the identity metric

because there is no lateral connection. The contracting rate of each nucleus is 1

τ
,

where τ is the common time constant of the N neurons of the nucleus. Thus, the

metric MBG of the basal ganglia is constituted of the blocks κGPeI, κSTNI, κD1I,

κD2I, κFS1 and κGPiI. Similarly, the thalamic metric MTH is constituted of the

blocks κFCI, κTH1 and κTRNI. The resulting metric for the whole system MCBG
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combines MBG and MTH in the following way

MCBG =

















MBG 0

0 αMTH

















Analysis of the basal ganglia.

• κGPe = 1

We can set κGPe to any value as there is no combination at this stage. The current

contracting rate is 1

τ
.

• κSTN = wGPe

STN
/wSTN

GPe

We use negative feedback. The contracting rate remains unchanged

•































κD1 = wGPe

D1
/((1 + γ)wD1

GPe
)

κD2 = wGPe

D2
/((1 − γ)wD2

GPe
)

We use small gains to show that the system constituted by the STN, GPe, striatum

D1 and D2 is contracting when

((1 + γ)wGPe

D1
wD1

GPe
)2 + ((1 − γ)wGPe

D2
wD2

GPe
)2 < 1 (15)

with a contracting rate 1

τ

(

1 −
√

((1 + γ)wGPe
D1

wD1

GPe
)2 + ((1 − γ)wGPe

D2
wD2

GPe
)2

)

• κFS = wD1

F S
/wF S

GPe

Again by use of small gains.

• κGPi = 1/(τσ(G))2

where σ(G) is the largest singular value of the matrix of projections on GPi and

τ is the slowest time constant of neurons in the basal ganglia. This constant is set

by using hierarchical combination.

Thus we can guarantee the contraction of the basal ganglia as soon as condition
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(15) is satisfied.

Analysis of the thalamus.

• κTH = 1

We can set κTH to any value as there is no combination at this stage. The current

contracting rate is 1

τTH
.

• κGPe = wTH

TRN
/wTRN

TH

We use negative feedback. The contracting rate remains unchanged

• κFC =
√

wTH
F C

2 + NwTRN
F C

2/wF C

TH

We use small gains to show that the thalamo-cortical module is contracting when

wF C

TH
(wTH

F C
+
√

wTH
F C

2 + NwTRN
F C

2) < 1 (16)

Remark that this condition depends on N . This would not have been the case if

we have modelled the TRN by N channels instead of 1.

Thus we can guarantee the contraction of the thalamus as soon as condition (16) is

satisfied.

It remains to examine the large loop between the thalamus and the basal ganglia

involving projections of the GPi and the FC. Again, we use small gains to set α.

α =

√

√

√

√

τFCtxκGPi (wSTN
F C

2 + wD1

F C

2 + wD2

F C

2 + nwF S
F C

2)

τTHκFC wTH
GPi

2

Proposition 3 Let MCBG = ΘT
CBGΘCBG be the diagonal metric defined above.

By theorem 2, if the generalised Jacobian ΘCBGWΘ−1
CBG is negative definite, the

dynamical system ẋ = ΠHn
(x,Wx + I(t)) describing the cortico-baso-thalamo-

cortical loop model is contracting with a rate |λmax|, where λmax is the largest

eigenvalue ofΘCBGWΘ−1
CBG.
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At this stage, we have provided an algebraic definition of the metric MCBG. Un-

fortunately, the complexity of the induced generalized Jacobian prevents us from

giving a global algebraic condition on the projection weights for the generalized

Jacobian to be negative definite. This is not of major incidence as we can compute

numerically, for any instance of the weights, the eigenvalues of the symmetric part

of the generalized Jacobian and check that they are all negative.

Table B.2 gives the numerical value of the constants defining the metric MCBG

for the set of parameters of our simulation (see table B.1). Using the free software

Octave, we compute in that case the eigenvalues of the generalised Jacobian and

obtain that our model is contracting with contracting rate of 2.20.

Notice that computing the maximum real part of the eigenvalue of the non projected

dynamics (which is linear) gives an upper bound of the contracting rate. For the set

of parameters of our simulation, this upper bound is 2.59. It is remarkable that being

forced to use diagonal metrics in our proof (which discards a huge set of metrics)

has not much decreased the contracting rate.

[Table 2 about here.]

4.2 Basic selection test

We first reproduced the selection test of Gurney et al. (2001b) with our model and

with the GPR model version presented in (Prescott et al., 2006). In this test, a

specific sequence of five different salience vectors (represented by the dashed lines

in fig. B.3) is submitted to a 6-channels version of the BG model, in order to show

the basic selection properties of the system. Here, we submitted each vector to the

system during 2s before switching to the next one in the sequence.

25



[Fig. 3 about here.]

During the CBG simulation (fig. B.3, top row), with the first vector of null saliences,

the system stabilizes in a state where all channels are equally inhibited (xGPi
i =

0.095). Then, the first channel receives a 0.4 input salience which results in a clear

disinhibition of this channel (xGPi
1 = 0.014) and increased inhibition of the oth-

ers. When the second channel salience is set to 0.6, it becomes perfectly selected

(xGPi
2 = 0) while the first one is rapidly inhibited to a level identical to the one

of the four last channels. During the fourth step, the salience of the first chan-

nel is increased to 0.6, channels 1 and 2 are therefore simultaneously selected

(xGPi
1 = xGPi

2 = 0.03). Finally, during the last step of the test, channel 1 has its

salience reduced to 0.4, and it is then rapidly inhibited, while the channel 2 returns

to perfect selection (xGPi
2 = 0). The CBG thus passes this test in a satisfactory man-

ner: the channels with the highest saliences are always selected while the others are

inhibited.

The GPR simulation (fig. B.3, bottom row) is qualitatively quite similar, excepted

during the fourth step of the sequence (emphasized with an asterisk): while the

salience of channel 1 increases from 0.4 up to 0.6 (the same salience as channel 2),

channel 2 remains selected and channel 1 is fully inhibited (its level of inhibition is

higher than the inhibition at rest). The inputs in channels 1 and 2 being exactly the

same, this difference in their selection state is clearly caused by the initial condi-

tions of the system (i.e. the fact that channel 2 was selected before). This example

of a dependence on the initial conditions clearly shows that the GPR model is not

contracting.

Indeed, as we have seen in section 2.3, a rate coding neural network is contracting

only if its non projected dynamics is contracting in a diagonal metric. But a linear

26



system is stable if and only if all its eigenvalues have a negative real part. Com-

puting the eigenvalues of the linear part of the GPR reveals that N − 1 of them

have a positive real part (namely 10.387). We can thus conclude that the GPR is not

contracting.

4.3 Systematic salience search test

This first result is however not surprising, as revealed by the systematic salience

search experiment performed in (Prescott et al., 2006), and that we also reproduced

with both the GPR and the CBG. In this experiment, the first two channels of the

ASM are put in competition in the following manner: the first channel salience is

increased from 0 to 1 in steps of 0.01, and for each of these steps, the salience of

the second channel is also gradually increased from 0 to 1 in steps of 0.01. The

system is run to convergence between all step increases. The internal state of the

model is not reset between each channel 2 salience increase, but only for channel 1

steps. This means that the test evaluates the selection response of the system with

one channel salience fixed while the other one gradually increases.

[Fig. 4 about here.]

In order to evaluate the response of the ASM to this experiment, four numerical

values are computed. First, the efficiencies of the selection of channel 1 and 2,

equivalent to the percentage of disinhibition, is computed as follows:

ei = [1 − yGPi
i /yGPi

Rest]+ (17)

with i the index of the channel, yGPi
i the output of the ith GPi neuron and yGPi

Rest the

output inhibition of all channels when all saliences are null. The absolute efficiency
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of the selection is defined as the efficiency of the winning channel:

ew = max
i

ei (18)

Finally, the distortion of the selection, which is null when the winning channel only

is disinhibited and increasing with the disinhibition of its competitors, is defined

by:

dw = 2

∑

i ei − ew
∑

i ei

(19)

The results of the experiment are summarized by the ew and dw graphs (fig. B.4),

where the value of the each of these variables is represented with regards to the

corresponding channel 1 (abscissa) and channel 2 (ordinate) saliences. First observe

that the GPR results we obtain with 6 channels are very similar to those presented in

(Prescott et al., 2006) for a 5-channel GPR. Concerning ew (top row), whereas, for

the CBG, the selection switches from channel 1 to channel 2 as soon as the salience

of channel 2 is larger than the salience of channel 1 (when it crosses the diagonal

in dashed black), for the GPR, this switch is delayed until much higher values are

reached (when is crosses the black line). As previously noted, this hysteresis effect

is a direct consequence of the non-contraction of the GPR.

Note that when high saliences are in competition, the GPR tends to partially select

both channels (ew < 1 and dw > 0), while the CBG fully disinhibits both channels

(ew = 1 and dw close to 1). Which behavior is preferable for an ASM is not decided.

Is the GPR strong dependence on initial conditions a good feature for an ASM?

Prescott et al. (2006) argue that it allows behavioral persistence, and that in their

experiment, the robot takes advantage of it to avoid dithering between actions. We

do not claim that there is a definitive answer to the question. Nevertheless, in the

next section, we describe the evaluation of the CBG in a minimal survival task in

which the robot also avoids dithering, despite its contracting ASM. This shows that
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this dependence on initial conditions is not necessary from the point of view of

dithering avoidance.

5 Minimal survival task

5.1 Material and methods

The suitability of the model for action selection in an autonomous robot has been

tested in simulation with the same minimal survival task previously used to eval-

uate the GPR model (Girard et al., 2003). In order to emphasize its properties,

and in particular those resulting from the selective feedback loop, its performance

was compared to a simple if-then-else decision rule (ITE, fully described in ap-

pendix A).

In such a task, the robot has to go back and forth between locations containing two

different kind of resources, in order to keep its energy level above 0. The robot has

two internal variables, namely Energy and Potential Energy, taking values between

0 and 1, and an artificial metabolism, which couples them as follows:

• The Energy (E) is continuously decreasing, with a constant consumption rate

(0.01 Energy unit per second). When it reaches 0, the robot has run out of energy

and the ongoing trial is interrupted. To prevent this, the robot has to regularly

acquire Energy by activating the ReloadOnE action on an Energy resource. Note

that ReloadOnE only transforms Potential Energy into Energy (0.2 units of Ep

are transformed in 0.2 units of E each second), thus Potential Energy has to be

also reloaded.

• The Potential Energy (Ep) is a sort of Energy storage, it can be acquired by acti-
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vating the ReloadOnEp action on a Potential Energy resource, and is consumed

in the transformation process only.

In this version of the task, the experiments are run in simulation using the Player/Stage

robot interface and robot simulator (Gerkey et al., 2003). The simulated robot is a

40 × 50cm wheeled robot with differential steering, similar to the Activ-Media Pi-

oneer 2DX (fig. B.5), equipped with a ring of 16 sonars and a camera. The sonar

sensors have a maximum range of 5m and a view angle of 15◦, the camera has a

resolution of 200× 40 pixels and a view angle of 60◦ and uses a color-blob-finding

vision device to track the position of red and blue objects. The experiment takes

place in a 10 × 10m arena, containing one Energy and one Potential Energy re-

source (fig. B.5). These resources are represented by colored 50 × 50cm objects

(respectively red and blue), and don’t constitute obstacles (as if they were sus-

pended above the arena). They are randomly positioned in the arena for each trial,

with the constraint that their center is at least 1m away from the walls.

[Fig. 5 about here.]

The robot has to select among seven possible actions:

• ReloadOnE (ROE) and ReloadOnEp (ROEp) affect the robot’s survival as pre-

viously described. These actions are effective if the robot is facing the corre-

sponding resource and is close enough (45◦ of the camera field of view is occu-

pied by the resource).

• Wander (W ) activates random accelerations, decelerations and turning move-

ments.

• Rest (R) stops the robot, which is a disadvantage as the robot has to continuously

explore the arena to find resources, but Rest also halves the rate of Energy con-

sumption (0.005 unit per second), which promotes long survival. Consequently,
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it should be activated when there is no risk (i.e. when both internal variables

reach high levels) in order to minimize the Potential Energy extracted from the

environment to survive.

• AvoidObstacle (AO) uses data from the 6 front sonars the 2 central rear sonars

in order to avoid collisions with walls.

• ApproachE (AE) and ApproachEp (AEp) use the color-blob-finder in order to

orient and displace the robot towards the corresponding resource if it is visible.

The action selection mechanisms base their decisions on the following variables:

• E, Ep,(1 − E) and (1 − Ep), which provide the amount (or lack of) Energy and

Potential Energy,

• seeEBlob and seeEpBlob, which are set to 1 if a red (resp. blue) object is in the

camera input, and to 0 otherwise,

• onEBlob and onEpBlob, which are set to 1 if a red (resp. blue) object is larger

than 150 pixels (i.e. close enough to allow the use of the corresponding resource),

and to 0 otherwise,

• SFR and SFL are the values of the front-right and front-left sonar sensors,

measured in meters, taking values between 0 and 5.

For the CBG, the detailed salience computation using these variables is given in

appendix B.

The action selection mechanisms receive new sensory data every 100ms, and must

then provide an action selection for the next 100ms. Concerning the ITE, it is sim-

ply done by executing the decision rule once with the latest data. Concerning the

CBG, the selection is made using the output inhibition resulting from the compu-

tation of 100 simulation steps of 1ms, using the latest sensory data. A given action

is then considered selected if the inhibition of the corresponding channel is below
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the inhibition at rest yGPi
Rest (as defined previously). In the case of multiple channel

disinhibition, the following action combination rules have been defined:

• Rest is effective if and only if it is the only disinhibited action,

• ReloadOnE and ReloadOnEp are effective if and only if the robot does not move,

• The other movement-generating actions can be co-activated. In that case, the effi-

ciency of selection (as defined by equation 17) is used to weight the contributions

of each action to the final motor command.

The comparison between the CBG and the ITE is made according to the following

protocol: 20 random resource positions are drawn and, for each model, 20 trials are

run using the same set of positions. The robot begins the experiment with a full

battery (E = 1) and no Potential Energy storage (Ep = 0), this allows a maximal

survival duration of 1min40s if no reloading action occurs. Unless the robot runs

out of energy (E = 0), the trial is stopped after 15min.

5.2 Results

The first result is that the CBG and the ITE algorithm have similar survival per-

formance. They are both able to survive the trial in a majority of cases, but can

be subject to premature Energy shortage. This is expected, because their ability to

find resources is limited by the camera range and field of view, as well as by the

random exploration action. The average survival duration is 687s(σ = 244) for the

CBG and 737s(σ = 218) for the ITE, and the two-tailed Kolmogorov-Smirnov test

confirms that the two sets of survival durations are not drawn from significantly

different distributions (DKS = 0.2, p = 0.771). From an action selection point of

view, the comparison of the two mechanisms is thus fair: despite they were tuned
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independently, they both achieve similar survival performance.

[Fig. 6 about here.]

Nevertheless, a clear behavioral difference between the two mechanisms was ob-

served, which has significant repercussions on their ability to store Potential Energy

and on the Potential Energy extracted from the environment. Indeed, while the CBG

may use its feedback loops in order to persist in action execution, the ITE was de-

liberately deprived of any memory. This was done in order to investigate the effects

of this persistence property. The ITE exhibits behavioral dithering in a critical and

frequent situation: when the robot fully reloads its Energy, it activates the Wander

action, but after 100ms of Wander execution, some Energy has been consumed and

the robot has not moved much. In most cases, it is still on the Energy resource, and

if it still has spare Ep, ReloadOnE is activated again. This repeats until there is no

Ep left or until, small movements by small movements, the robot has left the re-

source (see fig. B.6). This dithering generates a strong energy dissipation: 100ms of

Wander consumes 0.001 units of Energy, and during the following 100ms, Reload-

OnEnergy consumes 0.02 units of Ep while E, being bounded by 1, increases of

0.001 only.

On the contrary, in the same situation, the CBG takes advantage of a hysteresis

effect caused by the positive feedback from the frontal cortex to the basal ganglia

to avoid dithering.

[Fig. 7 about here.]

Indeed, the salience of ROE is defined by: SROE = 950× f(4× onEBlob×Ep ×

(1 − E)) + 0.6 × xFC
ROE (where f is a sigmoid transfer function, see appendix B).

Consequently, when the robot has a lack of Energy and reaches an Energy resource,
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onEBlob jumps from 0 to 1 and SROE also jumps from 0 (fig. B.7, point A) to a

level depending on the current E and Ep internal states (fig. B.7, point B) situated

on the raw SROE curve (fig. B.7, dashed line). In the case depicted in fig. B.7, SROE

is then much higher than SW , and ROE is thus selected. As a consequence, the

corresponding thalamo-cortical channel is disinhibited, leading to an amplification

of the salience, fed back to the basal ganglia thanks to the cortical output xFC
ROE

(this bonus is represented by the shaded area over the raw SROE curve on fig. B.7).

While the robot reloads, SROE decreases with (Ep × (1 − E)), but because of the

xFC
ROE salience bonus, it follows the blue trajectory down to point C, where Wander

is selected again. The deselection of ROE shuts off the xFC
ROE signal, causing an

immediate decrease to point D. As soon as the robot activates Wander, Energy is

consumed and SROE increases again, along the raw SROE curve. However, at point

D, SROE < SW , and as long as the robot manages to leave the resource before

SROE exceeds SW (points E and F, when the OnEBlob variable jumps from 1 to

0), no dithering occurs.

[Fig. 8 about here.]

This observation is not trivial, as it has a direct consequence on the global Ep stor-

age of the ITE: both CBG and ITE keep high levels of Ep (between 0.9 and 1) more

than 50% of the time (fig. B.8, right), but for the rest of the time, the ITE level is

very low (0−0.1) much more often (almost 20% of the time) than the CBG. More-

over, the CBG activates the Rest action often enough to extract, on average, less

Potential Energy from the environment (0.93×10−2Ep.s−1, σ = 0.30×10−3) than

the basic rate (1 × 10−2Ep.s−1). On the contrary, the dissipation of energy caused

by the dithering of the ITE generates a much higher Potential Energy extraction rate

(1.17 × 10−2Ep.s−1, σ = 1.17 × 10−3). The two-tailed Kolmogorov-Smirnov test

reveals that the Ep consumption rates measured for the CBG and the ITE (fig. B.9)

34



are drawn from different distributions (DKS = 0.95, p < 0.001). The ITE dithering

thus generates so much dissipation that it has to extract extra Potential Energy from

the environment, despite its use of the Sleep action to lower its consumption, while

the CBG exploits as much as possible this possibility to limit Potential Energy ex-

traction.

[Fig. 9 about here.]

6 Discussion

We proposed a new action selection mechanism for an autonomous robot, using

a multidisciplinary approach combining computational neuroscience and dynamic

system theory. This study proved fruitful in the three considered domains:

• We proposed an extension of the contraction theory to locally projected dynam-

ical systems, which was necessary to study the stability of rate-coding neural

networks.

• As a consequence, we proposed a modified rate-coding artificial neuron model.

• Using these results, we designed a stable model of the cortico-baso-thalamo-

cortical loops (CBG) using previously neglected anatomical data.

• After having tested this model offline, we integrated it in a simulated robot con-

fronted to a standard survival task to assess its efficiency as an action selection

mechanism.
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6.1 Dynamic systems

In this paper, we have investigated the stability properties of locally projected dy-

namical systems (lPDS) using nonlinear contraction theory. In particular, we have

given a sufficient condition for a general non-autonomous (i.e. with time-varying

inputs) lPDS to be globally exponentially stable. By contrast, Zhang and Nagurney

(1995) only studied the stability of a fixed equilibrium point in autonomous lPDS.

Thus, the novelty of our theoretical result should be noticed.

Locally projected dynamical systems have attracted great interest since they were

introduced in 1993 by Dupuis and Nagurney. Indeed, this theory is central to the

study of oligopolistic markets, traffic networks, commodity production, etc (Dupuis

and Nagurney, 1993). As we demonstrated in this article, this theory has also proved

to be a valuable tool for establishing rigorous stability properties of neural net-

works. In this respect, further development of the theory as well as its application

to numerous problems in theoretical neuroscience may represent exciting subjects

of research.

6.2 Neuroscience

The CBG shares a number of similarities with the previously proposed GPR model

(Gurney et al., 2001b), as its selection ability relies on two off-center on-surround

subcircuits. However, it includes neglected connections from the GPe to the Stria-

tum, which provide additional selectivity. It also considers the possible role of

global projections of the GPe to the STN, GPi and SNr as a regulation of the activity

in the whole basal ganglia.
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We omitted two types of documented connections in the current CBG model. First,

the STN projects to the GPe, GPi and SNr but also to the striatum (Parent et al.,

2000). Intriguingly, the population of STN neurons projecting to the striatum does

not project to the other targets, while the other STN neurons project to at least two

of the other target nuclei (GPe, GPi or SNr). We could not decipher the role of

this striatum-projecting population and did not include it in the current model. Its

unique targeting specificity suggests it could be functionally distinct from the other

STN neurons. To our knowledge, no modeling study has yet proposed a functional

interpretation of this connection, a question that should be explored in future works.

The other missing connections concerns the fact that lateral inhibition exist in GPe

and SNr (Park et al., 1982; Juraska et al., 1977; Deniau et al., 1982). These addi-

tional projections were added to a version of the GPR (Gurney et al., 2004a) and

seemed to enhance its selectivity. We might add these connections and proceed to

a similar test with the CBG.

The GPe to striatum connections have the previously evoked functional advantage

of enhancing the quality of the selection, by silencing the unselected striatal neu-

rons. Interestingly, the striatum is known for being a relatively silent nucleus (De-

Long et al., 1984), a property supposed to be induced by the specific up/down state

behavior of the striatal neurons. When using simple neuron models, like leaky-

integrators, it is usually difficult to reproduce this with a threshold in the transfer

function only: when many channels have a strong saliences input, all the corre-

sponding striatal neurons tend to be activated. Our model suggests that in such a

case, the GPe-striatum projections may contribute to silencing the striatum.

The proposed model includes the modulatory role of the dopamine (DA) in the BG

selection process only, which corresponds to the tonic level of dopaminergic input

from the ventral tegmental area and the substancia nigra pars compacta (VTA and
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SNc). The effects of the variation of this tonic DA level on the selection abilities

of the BG has been examined in details for the GPR (Gurney et al., 2001b), and

compared with symptoms of Parkinson’s disease.

The role of the phasic dopamine activity in reinforcement learning, through the

adaptation of the cortico-striatal synapses, is beyond the scope of our study. Nev-

ertheless, such an extension of the CBG could allow the online adaptation of the

saliences, which are here hand-tuned. The existing models of reinforcement learn-

ing in the BG are based on the temporal difference (TD) learning algorithm (Houk

et al., 1995; Joel et al., 2002). These TD models are composed of two cooperating

circuits: a Critic dedicated to learning to predict future reward given the current

state, and an Actor, using the Critic’s predictions to choose the most appropriate

action. Our model can then be considered as an Actor circuit, more anatomically

detailed than those usually used (simple winner-takes-all, without persistence prop-

erties). First attempts at using detailed Actor models in TD architectures for tasks

requiring a single motivation have been conducted (Khamassi et al., 2004, 2005;

Frank et al., 2007). Note however that the use of the current TD-learning models

would not necessary be straightforward in our case: we had to use relatively com-

plex salience computations (see appendix B), in order to solve our relatively simple

task. This is caused by its multi-motivational nature, quite common in action selec-

tion problems, but which has been given only little attention in RL-related works

(Dayan, 2001; Konidaris and Barto, 2006).

6.3 Autonomous robotics

While early action selection mechanisms were based on a purely engineer approach

(Pirjanian, 1999), progress in the understanding of the physiology of the brain re-
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gions involved in action selection now allows the investigation of biomimetic action

selection mechanisms. Indeed, basal ganglia models –variations of the GPR– and

reticular formation models have already been used as actions selection mechanisms

for autonomous robots (Montes-Gonzalez et al., 2000; Girard et al., 2003, 2005a;

Humphries et al., 2005; Prescott et al., 2006).

We showed here that the CBG may exploit its cortical feedback to exhibit behav-

ioral persistence and thus dithering avoidance, one of the fundamental properties

of efficient ASMs (Tyrrell, 1993). In our experiment, this promotes energy stor-

age and reduced energy consumption. These properties, which clearly provide a

survival advantage, were also highlighted for the GPR when tested in a similar ex-

periment (Girard et al., 2003). Thus, comparing the GPR and the CBG in exactly

the same task could reveal some subtle differences which were not identified yet.

Moreover, in the current version of the CBG, these cortico-striatal feedback con-

nections are strictly channel to channel, the possible sequence generation effects

that could result from cross channel connections probably deserves additional at-

tention.

The contraction property of the CBG also provide a fundamental advantage for

an autonomous robot. It provides a theoretical certainty regarding its stability of

operation, whatever the sequences of input might be. For an autonomous agent

confronted to a uncontrolled environment, where all possible sequences of inputs

may happen, it seems to be essential. Of course, contraction analysis does not say

anything about the pertinence of the resulting stable behavior, hence the necessity

of verifying the CBG selection properties. However, the fact that stability issues

have already been evoked for previous GPR versions (Girard et al., 2005a; Prescott

et al., 2006) confirms that such a rigorous proof is useful.
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A If-Then-Else decision rule

The If-Then-Else decision tree is the following:

if Ep < 1 and onEpBlob = true then

ReloadOnEp

else if E < 1 and Ep > 0 and onEBlob = true then

ReloadOnE

else if E < 0.8 and Ep > 0 and seeEBlob = true then

ApproachE

else if Ep < 0.8 and seeEpBlob = true then

ApproachEp

else if E > 0.7 and Ep > 0.7 then

Rest

else if SFL < 1 or SFR < 1 or (SFL < 1.5 and SFR < 1.5) then

AvoidObstacle

else

Wander

end if
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B Robot CBG saliences

Using the sigmoid transfer function

f(x) =
2

1 + e−4x
− 1

the saliences of each action (including the frontal cortex feedback) are:

SROE = 950 × f(4 × onEBlob × Ep × (1 − E)) + 0.6 × xFC
ROE

SROEp
= 750 × f(4 × onEpBlob × (1 − Ep)) + 0.2 × xFC

ROEp

SW = 380

SSl = 550 × f(2 × max(Ep × E − 0.5, 0))

SAO = 950 × f(2 × (max(1.5 − SFL, 0) + max(1.5 − SFR, 0))) + 0.2 × xFC
AO

SAE = 750 × f(seeEBlob × Ep × (1 − E) × (1 − onEBlob)) + 0.2 × xFC
AE

SAEp
= 750 × f(seeEpBlob × (1 − Ep) × (1 − onEpBlob)) + 0.2 × xFC

AEp
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projections.
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Fig. B.3. Variation of the GPi/SNr inhibitory output during the Gurney et al. (2001b) test

applied to (top) the CBG and (bottom) the GPR. Dashed lines represent the input salience

of the channel and solid lines represent the output of the channel. Note that during the

fourth step (6s < t < 8s), channels 1 and 2 are selected by the CBG, while the GPR

selects channel 2 only (asterisk).
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Fig. B.9. Potential Energy consumption rate. These histograms represent the average Ep

consumption rate computed for each trial. Top: BG model; bottom: ITE; the dashed line

shows the Energy consumption rate of all actions except Rest (0.001E/s).
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Table B.1

Parameters of the simulations.

N 6 τ 40ms τ
STN

5ms τ
F S

5ms τ
F C

80ms

τ
TH

5ms τ
TRN

5ms γ 0.2 wD2

GPe
1 wGPe

D2
0.4

wD1

GPe
1 wGPe

D1
0.4 wF S

GPe
0.05 wD1

F S
0.5 wD2

F S
0.5

wGPe
STN 0.7 wSTN

GPe 0.45 wGPi
GPe 0.08 wGPi

STN 0.7 wGPi
D1

0.4

wTH
TRN 0.35 wTRN

TH 0.35 wTH
F C 0.6 wF C

TH 0.6 wTRN
F C 0.35

wTH

GPi
0.18 wSTN

F C
0.58 wD1

F C
0.1 wD2

F C
0.1 wF S

F C
0.01

ID1 −0.1 ID2 −0.1 ISTN 0.5 IGPi 0.1 IGPe 0.1
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Table B.2

Value of the constants defining the metric MCBG for the set of parameters of our simulation

κGPe κSTN κD1 κD2 κFS κGPi κTH κTRN κFCtx α

1 0.441 0.577 0.707 1 0.104 1 1 5.282 0.253
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