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Abstract— In recent years, there has been an increasing
interest in developing systems that couple a robotic device with
an ultrasound imager. Applications range from automatic probe
positioning to ultrasound image-based guidance of instruments.
One issue in these systems is to determine, prior to the
intervention, the localization of the probe with respect to the
robot. Literature suggests using external localizers, but they add
to the complexity of the system, and the resulting precision is
usually not good due to the addition of errors in the kinematic
chain.
In this paper, we study the hand-eye calibration problem with-
out using any additional localizers. A generic system consisting
of a fixed probe observing an instrument manipulated by a
robot is used. We first derive a simplified model for mapping the
image of the instrument with its 3D location w.r.t. the probe and
then propose a calibration procedure based on a minimization
algorithm.
Results show that although very simple models were used for
the imaging device, the localization is quite precise, as it results
in errors of less than 2mm, which is enough of a number of
ultrasound guided interventions.

I. INTRODUCTION

Because it is portable, real time, inexpensive and not
irradiating, ultrasonic imaging is by far the most widely used
medical imaging modality. Ultrasound imaging systems are
used either for non invasive observation only, or for monitor-
ing an intervention. In the first case, the practitioner has to
precisely and stably positions the probe so as to obtain the
desired cross-section for proper observation. In the latter, the
surgeon moves an instrument inside a patient while observing
the motion of the instrument with an outer ultrasound probe.
In general, surgeon positions the probe in order to see the
instrument and the target in the same image. Then he uses
one hand to maintain the probe fixed in that position while
with the other hand he manipulates the instrument toward the
target. This requires high skills for coordinating the hands
holding the instrument and the probe. In fact, the ultrasound
image gives only a 2D cross-section of the 3D operating
region, containing no depth information. Therefore, manual
ultrasound guided interventions are limited to simple tasks,
such as puncture using a needle [1].
Within this context, robotic systems are being developed
in order to accomplish ultrasound image-based guidance
in a more performing way than manual procedures. More
and more interventional systems exploit both robotics and

medical imaging.
A major issue in these systems is the registration of the
different devices that is necessary to perform precise po-
sitioning.
A first solution consists of mechanically attaching the in-
strument holder with the probe. For example, a system for
guiding a needle by visual servoing is proposed in [2]. It
consists of an ultrasound probe and a two degrees of freedom
needle manipulator. The needle manipulator is mechanically
forced to remain in the probe plane. The needle orientation
and penetration are directly known from the manipulator
joint position, thus not requiring any external registration.
However, this approach limits the applications to those where
the range of motion of the instrument with respect of the
probe is small. It is thus not appropriate for applications
where the probe location and the instrument port are to be
chosen independently by the surgeon. On the contrary, in this
research, we target applications where:

1) the relative localization of the probe holder and the
instrument holder are to be setup independently;

2) the instrument has more than one or two degrees of
freedom w.r.t. the probe.

A typical application described in [3], [4] consists of intrac-
ardiac surgery, where an instrument, manipulated by a robot,
is inserted into the beating heart, where it can move with four
degrees of freedom while its motion is observed through a
trans-esophagus ultrasonic probe. By no way the probe can
be physically linked to the instrument.
To cope with this type of registration need, there has been
a significant effort towards 3D reconstruction, associated
with 3D imaging. In this class of systems, pre-or per-
operative images are processed in order to reconstruct 3D
information which is then used by the robot. In [5], two
robots collaborate. A first robot handles the ultrasound probe.
Thanks to a localization of the anatomical target in the image
and geometrical model, a second robot, handling a needle, is
commanded towards the computed 3D position. In vitro tests
emphasize a better accuracy than with manual procedures.
The system proposed by [6] allows carrying out a biopsy of
the prostate. The prostate 3D model is reconstructed using
the ultrasound images. Thus the robot is fed with the 3D
model in order to compute the trajectory. The tests on dead



bodies showed a final positioning error of about, at best,
2.5 mm. Some systems also use the images to perform, in real
time, the 3D reconstruction of the desired position insteadof
establishing a patient model from preoperative images, [7],
[8]. In these systems, the target is detected and tracked in
the images. Their 3D position can then be calculated in a
robot coordinate frame. The main limits of these approaches
are:

1) external localizers are used for the registration of the
devices, which adds to the complexity and price of the
overall system, while it is desirable to limit the amount
of equipment brought into the operating room;

2) the final geometrical positioning algorithm consists of
chaining several transforms, from the probe to the
robot base, then from the robot base to the instrument,
which results in significant errors.

Avoiding the accumulation of geometrical errors is always
possible by closing the loop, namely positioning the in-
strument using visual servoing. In this case, corrections are
constantly made so that the instrument location in the image
is finally correct, whatever the geometrical errors are, thanks
to the capacity of rejecting static disturbances. However,
apart from the specific visual servoing technique that we
proposed in [4], all the other existing techniques (see e.g.
[9], [10]) require the knowledge of the location of the probe
with respect to the instrument.
Therefore, there is a common need for a registration proce-
dure that avoids the use of external sensors. In [11], such
a calibration is proposed by the use of a phantom visible
in the ultrasound 2D cross section, resulting in errors as
small as 2.5 mm for a focus depth of 6 cm. This approach is
however not valid for the type of targeted applications, since
the phantom could not be used in an operating room.
In this paper, we have used a conventional hand-eye calibra-
tion procedure, which, to our knowledge, had never been
used so far with ultrasound imaging. Its principle is to
identify the unknown parameters of a measurement equation,
thanks to several image measures taken at several positions
of the instrument w.r.t. the probe. Only the relative motion
of the instrument is known, thanks to the instrument holder
proprioceptive sensors. In the case of ultrasound imaging,
the difficulty lies not only in the image noise, which is
high, but also in the fact that the imaging geometry is rather
complex, as the probe produces a cross section over a slice of
unknown and depth-varying thickness. This hardly translates
into parametric equations. We thus used a simplified model
with a planar cross section, arbitrarily identifying the center
of image blob to the image of a 3D point belonging to a
known straight line of the instrument. In spite of this drastic
simplification, after calibration, the remaining error between
the real measurements and the model remains less than 2
pixels.
The rest of the paper is organized as follows: Section II
describes the canonical system used to demonstrate the
approach and its simplified model. In section III, the cali-
bration algorithm is detailed. Finally, Section IV shows the

experimental validation.

II. ULTRASOUND BASED ROBOTIC SYSTEM

A. System overview

A canonical configuration of a robot-held instrument
guided through US imaging has been used for this study. It
is sketched in Fig. 1. The robot-held instrument is observed
by an ultrasound probe, which images are transmitted in real
time to a computer.
The instrument is attached to the end-effector of the robot
in such a way that its axis is parallel to the axis of the last
robot joint denotedk6 using Denavit-Hartenberg convention.
Furthermore, the originO6 of the frame attached to the robot
end-effector belongs to the instrument axis.
We assume that the probe is fixed with respect with the robto
base. Indeed, during US-guided intervention, the instrument
is moved while the probe stays still. Moving at the same
time instrument and probe requires too high skills of coor-
dination and could lead to loose the visibility of the target
or instrument.
In the chosen configuration, the instrument axis intersectsthe
ultrasound plane. Thus, a blob is visible in the image, which
allows for the instrument localization, thanks to appropriate
image processing algorithms.

Fig. 1. System Description

This algorithm provides in real time the coordinatessmes of
the center of gravityG of the blob corresponding to the
instrument image see [12].

B. Geometrical modelling

In order to derive the identification algorithm, a first step is
to establish a geometrical model between the 3D position and
orientation of the instrument and its 2D position in the image.
Literature and documentation report that the points visible
in the US image are those belonging to the intersection of
the visualized object and a 3D thick beam, as illustrated in
Fig. 2. Therefore, the relationship between the position and
orientation of the instrument and the center of gravity of
the image blob, grouping all the visible points after image
binarization, is quite complex to derive. We thus propose a
simplification consisting of identifying the center of gravity
G of the instrument image and the pointM corresponding at



the intersection of a lineD (which represents the axis of the
instrument) and a planΠ representing the ultrasound probe,
see Fig. 2.

Fig. 2. Modelling hypothesis

The following coordinate frames are used for the geometrical
modelling (see Fig. 3):

• F0 = {O0; i0, j0,k0} is the coordinate frame attached to
the robot base.

• F6 = {O6; i6, j6,k6} is the coordinate frame attached to
the robot end-effector.

• FI = {I ; iI , j I ,kI} is the coordinate frame attached to the
instrumentI , with I belonging to the instrument axis
and the vectorkI being parallel to the instrument axis.
The assembly described previously allows to choose
kI = k6 and I = O6.

• FP = {P; iP, jP,kP} is the coordinate frame attached to
the ultrasound probeP with kP perpendicular to the
ultrasound plane, andP the origin of the ultrasound
beam.

(a) Coordinate frames description (b) Euler’s angles
ZXY

Fig. 3. Coordinate frames and angles used

Deriving the geometrical model consists in finding the coor-
dinate of the pointM in the frame attached to the probe.
The pointM belongs to the planeΠ as well as to the line
D .

Since pointM belongs to lineD , one has :
{

dPM
T kP = 0

dIM = l kI
(1)

where, as in the rest of the paper,dAB denotes the vector
from point A to point B. Projecting in the probe frameFP

one gets:






l = −
PkP

T (PdPO0 +RP→0
0dO0O6)

PkP
T RP→0R0→6

6k6
if Pk6

T PkP 6= 0

PdPM = PdPO0 +RP→0
0dO0O6 + l RP→0R0→6

6k6
(2)

where, as in the rest of the paper,Ab denotes the
components of a vectorb is the basis of frameFA and
RA→B is the rotation from frameFA to frameFB. It can
be noticed that the conditionPk6

T PkP 6= 0 means that the
instrument and the planeΠ intersect in one point.

C. Parameters to be identified

The proposed geometric model depends on the geometrical
model of the robot (0dO0O6 and R0→6) and on the location
of its base with respect to the probe(SdSO0 andRS→0).
Since a very precise industrial robot (Staubli TX40) is usedin
these experiments, one can assume that the position0dO0O6

and orientationR0→6 of its end-effector with respect to its
base are perfectly known. Moreover, we know thatSkP =6

k6 =
[
0 0 1

]T
.

The unknown parameters of the model are thus the param-
eters describing the position and orientation of the base of
the robot with respect to the probe:PdPO0 andRP→0.
Finally, it should be noted that the measures in the image
are extracted in pixels, therefore they must be converted
into meters to fit in the geometrical model. The relationship
between measures of pixels coordinatessmes of the blob
center of gravity and its coordinates in metersPdPM in the
frame attached to the probe writes:

smes=

[
kx 0 0
0 ky 0

]

PdPM (3)

with kx and ky being scale change gains to apply alongiP
and jP respectively.
The vector which contains all the uncertain parameters
writes:

p =
[

PxO0
PyO0

PzO0 rx ry rz kx ky
]T

(4)

with:

• the vector PdPO0 =
[

PxO0
PyO0

PzO0

]T
being the

position of the base frame origin expressed in the probe
frame;

• the anglesrx, ry and rz being the XYZ Euler angles
which describe the orientation of the base frame with
respect to the probe frame.



III. CALIBRATION PROCEDURE

A. Principle

The calibration procedure is to optimize a set of badly-
known parametersp of a system by minimizing the error
between a set of measured variablessmeas with the same
variables reconstructedsrec using a models = f (p). More
precisely the principle of calibration is as follows:

• The system is placed inn configurations. For each
configurationi ∈ {1..n}, variablessmeas,i are measured;

• Badly-known parameters are optimized so as to mini-
mize the error between the measured variables and the
variables computed by the model;

• Once the best parameters obtained, the calibration is
validated through a set measures that have not been used
for optimization.

The way to optimize the parameters is described below:
For the ith location of the instrument, one computes the
Jacobian matrix that maps the temporal derivatives of the
parameters to be identified into the temporal derivatives of
the measures. This relationship is written below:

ṡmeas,i= Jpi ṗ (5)

It is a nonlinear problem of optimization since the
matrixJpi depends on the parametersp. However, an iterative
procedure using a linearized relation provides good results,
[13], providing that the initial guess is not too far from the
real value.
Assuming small variation of the parametersδp, one can
write:

δsmeas,i= Jpiδp (6)

For then measures, this equation is:

δs= Jpδp (7)

with δs=
[

δsmeas,1
T δsmeas,2

T ... δsmeas,n
T]T andJp =

[
Jp1

T Jp2
T ... Jpn

T
]T

.
This matrix equation is then solved in the least squares sense.
Thus, if the matrixJp has a maximal rank, the inverted
relation is:

δp = J+
p δs (8)

with J+
p =

(
Jp

TJp
)−1

Jp
T being theJp pseudo-inverse.

The following algorithm is then used to minimize the error
between the variablessrec reconstructed from the model and
the variablessmes measured:

p = pinit

do

srec = f (p)

δp = J+
p ‖srec−smeas‖

p = p+δp

while(srec−smeas> emax) and (‖δp‖ > δpmax)

with pinit being an estimate value for the parameters to be
optimized, f (p) being the model,emax the error under which
one the founded parameters are assumed to be the optimized
ones andδpmax the parameters variation under which one a
local minimum is reached.

B. Derivation of the jacobian matrix

For the ith configuration of the system, the parameter
jacobian matrix Jpi is then computed by derivating the
geometrical model with respect to the uncertain parameters:

ṡmes,i=

[
k̇x 0 0
0 k̇y 0

]

PdPM +

[
kx 0 0
0 ky 0

]

PḋPM (9)

We denote :






Jk ṗ =

[
k̇x 0 0
0 k̇y 0

]

PdPM

Jmi ṗ =

[
kx 0 0
0 ky 0

]

︸ ︷︷ ︸

=K

PḋPM = KPḋPM
(10)

Thus the paramaters’ jacobian matrixJpi writes for the ith

configuration:
Jpi =

[
Jk +Jmi

]
(11)

To derive the matrixJk is trivial :

Jk =

[
0 0 0 0 0 0 PxM 0
0 0 0 0 0 0 0 PyM

]

(12)

To compute Jmi , one needs to calculate the temporal
derivative componentsPḋPM with respect to the parameters
δp :






l̇ =
kP

T(
[
dO0O6 − ḋPO0

]

×
Ω)

(kP
T .k6)

−
(kP

TdPO6)kP
T
[
dO0O6

]

×
Ω

(kP
T .k6)2

ḋPM = ḋPO0 −
[
dO0O6

]

×
Ω+ l̇ k6− l

[
k6
]

×
Ω

(13)

with Ω = PΩ(0/P) =
[
ṙx ṙy ṙz

]T
and where all vectors

are expressed in the coordinate frameFP.
One thus gets:

Jmi = K










I3×3−
k6kT

P

kT
Pk6

−l
[
k6
]

×−
[
dO0O6

]

× +

(

1−
kT

PdPO6

kT
Pk6

)

k6kT
P

[
dO0O6

]

×

03×2










T

(14)

IV. EXPERIMENTAL VALIDATION

A. Experimental set-up

The experimental set up, Fig. 4, is made of an ultrasound
probe plunged into a tank of water. This probe provides
images of an instrument manipulated by a 6 degrees of
freedom robot, the Staubli TX40. The tip of the instrument is
a 300mm long thin cylinder with a 3mm diameter. It consists
of a steel rod covered with polyurethane. This guarantees a



Fig. 4. Experimental set-up

blob of high intensity with limited artifacts.
The robot is placed in such a way that the instrument
intersects the ultrasound beam.

B. Calibration and validation of the proposed modelling

The first experiment is performed with an ultrasound
machine well settled: having a clear track of the instrument
with no artifact. This amounts to:

• a unmodified intensity of the echoes (intensity
gain= 1 dB);

• a 21.5 cm maximal depth of visibility.

The Fig. 5 shows the ultrasound image provided with such
a tuning.

Fig. 5. Instrument image provided by a well tuned ultrasound machine

The parameters are identified using 20 measures, leading in
the following set for the identified parameters:






PxO0 = 29.11 cm
PyO0 = 21.74 cm
PzO0 = 25.17 cm







rx = 0.0371 degrees
ry = 0.0606 degrees
rz = 175.2541 degrees

{
kx = 1.83 pixel/mm
ky = 1.81 pixel/mm

(15)
Figure 6 shows the results for this optimization, that com-

pare the positions measured during the experimentsmes,i with
the position provided by the geometrical modelling using the
identified parameters. The maximum error is 1.48 mm in x
(i.e alongiP) and 1.88 mm in y (i.e alongjP) and the mean
error is about 0.6 mm in x and in y, which correspond to ap-
prox. one image pixel. Therefore, the precision of the model
using the identified parameters gets down to the resolution
of the US imaging system. The identified parameters and
the proposed modelling allow proper reconstruction of the

0 5 10 15 20
−0.15

−0.1

−0.05

0

0.05

0.1

Measured and reconstructed   
X−coordinate in the image (m) 
vs location’s index

 

 

X
meas

X
rec

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Measured and reconstructed   
Y−coordinate in the image (m)
vs location’s index

 

 

Y
meas

Y
rec

−0.15 −0.1 −0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

Measured and reconstructed 
position in the image (m)  

 

 

M
meas

M
rec

0 5 10 15 20
−2

−1

0

1

2

Error between measured and              
reconstructed position in the image (mm)

vs location’s index

 

 

e
X

e
Y

Fig. 6. Parameters identification with a well tuned ultrasound machine

instrument positions in the image.
In order to verify that the calibration is still good for positions
which were not used during optimization stage, the robot is
placed into 5 other locations and the measured instrument
position is compared with the reconstructed position for these
5 locations. Results are plotted on Fig. 7.
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Fig. 7. Validation of the proposed geometrical modelling witha well tuned
ultrasound machine

Even if the error seams larger for fifth point than for the
other four locations, the error is similar as the one obtained
during the optimization procedure. The maximum error is
1.50 mm in x and 0.67 mm in y and the mean error is about
-0.23 mm in x and -0.14 mm in y. Thus the calibration is
still correct.
This overall validates the model simplification and the cal-
ibration procedure in the case of a well settled ultrasound
system.

C. Influence of the ultrasound machine tuning

In order to assess the influence of ultrasound machine
settings onto the proposed calibration procedure several
experiments were performed using settings that lead to higher
noise and different depths. The parameters which could
influence the modelling are the gain of intensity applied to
the image and the maximal depth of visibility.



1) Experiment with a high intensity gain applied to the
image: A second experiment is performed, applying higher
gain intensity. The gain intensity modifies the form, the
intensity and the size of the instrument track in the image
as shown in Fig. 8. The previous experiment is performed
again. The location of the probe with respect to the robot
base is the same as previously, only the gain intensity is
changed: 20 dB instead of 1 dB.

Fig. 8. Instrument image with 20 dB intensity gain

It is not necessary to optimize new parameters as they
are not modified from the previous experiment. Only the
comparison between measured and reconstructed position
is needed, Fig. 9. The mean error is 0.68 mm in x and
0.83 mm in y, with a maximal error of 1.68 mm in x and
1.65 mm in y. These errors are equivalent to ones obtained
during the first experiment (with a well settled ultrasound
machine). The gain intensity does not modify the validity of
the proposed model simplification. In other words, although
the shape of the instrument image is modified, its center
of gravity is unchanged. This is important because during
in vivo experiments, high gains may be required to see
anatomic features, [4].

2) Experiment with a short maximal depth visibility:A
last experiment was conducted to illustrate that the maximum
depth of visibility has no influence on the proposed model.
In this aim, the previous experiment is carried out once more.
The transformation between the robot base and the probe is
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Fig. 9. Reconstruction results with 20dB intensity gain

unchanged, the intensity gain is 1 dB, but the maximum
depth of visibility is 10.8 cm instead of 21.5 cm. This
produces a zoom on the part of the image that is close to
the origin of the ultrasound beam, Fig. 10.

Fig. 10. Instrument image with short depth of visibility

As the visible area is smaller than in previous experience,
only 9 positions were achieved. In addition, gains from
scale change between meters and pixels are changed due
to the new maximum depth of visibility. Therefore, a new
identification of the parameters must be done.
After the reconstruction, results still emphasize a good pre-
cision as illustrated in Fig. 11. The mean error is 0.88 mm in
x and 0.84 mm in y, with a maximum error of 1.68 mm in x
and 2.20 mm in y between the measured and rebuilt positions
in the image. These errors are similar to those obtained with
an ultrasound machine well settled. The maximum depth of
visibility does not affect the validity of the proposed model.
Furthermore, the optimized parameters are :






SxO0 = 29.76 cm
SyO0 = 22.74 cm
SzO0 = 25.02 cm







rx = 0.3788 degrees
ry = −0.0215 degrees
rz = 175.3632 degrees

{
kx = 3.72 pixel/mm
ky = 3.57 pixel/mm

(16)
These results are consistent. Indeed, the geometrical con-

figuration of the system has not been modified between the
experiences, in particular, the position and orientation of the
robot base with respect to the probe has remained constant.
The optimization should provide the same orientation and
position than previously which is the case as the error
between the new optimized parameters and the previous
ones is

[
ex0 ey0 ez0

]
=
[
−6 −10 1

]
millimeters and

[
erx ery erz

]
=
[
−0.34 0.08 −0.11

]
degrees.

The errors onex0 andey0 are due to a shift of the origin of
the image with respect to the ultrasound probe which in turn
is due to the change in the depth gain.
Also, as the depth factor has been divided by 2, it is not
surprising that we identify thatkx has been multiplied by
2.03 while ky has been multiplied by 1.97, which gives a
1.5% error with respect to the gain change expectation.
Through these experiments, we validate the hypothesis which
consists to match the center of gravity of a blob with the
intersection between a line representing the instrument and
a plane representing the ultrasound beam. Moreover, we
demonstrate that the validity of this hypothesis does not
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Fig. 11. Optimisation results with a short depth of visibility

depend on the tuning of the ultrasound machine.

V. CONCLUSION

Although we’ve been using a simple model together with
a straightforward iterative optimization method, the results
shown in this paper emphasize an unexpected precision,
which, in certain cases, is as low as the US image resolution.
Ultimately, since the precision is measured by matching a
model to a set of measurements, a simple inverse model can
be used to reach any desired position located in the image
within a millimetric precision. Note that the presented setup
was also used for real time control of the instrument using
visual servoing, during in vivo beating heart experiments,
[4].
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