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Abstract
The micromanipulation of objects of size between 10 µm and 1 mm is often disturbed by the adhesion
between the contacting surfaces. The electrostatic force in the contact alone can significantly perturb the
micromanipulation by its important adhesion effect. The electrostatic adhesion force is influenced by many
factors, i.e., the materials of the contacting bodies and the topography of the contact surface. Micromanip-
ulation by contact involves applying a squeezing force to hold the object firmly which causes the contact
surface to deform, flattening the surface asperities. The prime purpose of this work is to study the influence
of the plastic deformation of the surface asperities on the electrostatic adhesion force considering the con-
tact between two conductors. A single-level model of the surface roughness was considered in this study,
approximating the shape of a surface asperity by a sine function. A simulation tool based on the finite el-
ement method was used to compute the elastic–plastic deformation of the model surface asperities during
micromanipulation. Another numerical model was used to compute the electrostatic adhesion force acting
on the surface asperities in the initial and in the deformed configurations. A magnification factor of up to 20
was obtained for the electrostatic force in the contact evaluated numerically, related to the flattening of the
surface asperities, which can potentially lead to perturbations when releasing the object. The observed effect
is merely a lower bound of the real one, considering the simplifying assumptions of the numerical models.
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1. Introduction

A new field of interest which has emerged recently from the development of micro-
electro-mechanical systems (MEMS) is the use of (coated) metallic materials for
surgical applications because of their possible bio-compatibility and interesting
mechanical and wear properties compared to the widely used silicon. Surface phe-
nomena, such as adhesion, play a significant role in MEMS devices, with often dis-
turbing effects leading to a short lifespan of these micro-machines involving moving
parts [1, 2]. It is, therefore, a general objective of the related field of research to
study the surface forces responsible for these perturbations which, although neg-
ligible on the macroscopic scale, are of great importance on the considered small
scales. This originates from the different ratio between surface and volume forces
when considering the microscale/nanoscale: the surface-to-volume ratio is indeed
much more important on small scales.

In this study, issues related to electrostatic contact adhesion after micromanip-
ulation by contact with a gripper made of pure nickel are investigated through a
fully numerical approach. Surface forces, particularly adhesion [3], play a domi-
nant role in micromanipulation by contact and in the handling of microdevices and
components [4, 5]. The disturbing adhesion between the manipulating equipment
and the object can lead to the impossibility of the release and precise positioning
of the handled object. Various surface forces with different physics involved can be
identified as potential sources of adhesion, i.e., the capillary force [6, 7], the van der
Waals force [7, 8], the electrostatic force [9] and the chemical bonding of surfaces.

This work focuses on the contribution of only the electrostatic force to adhe-
sion because it is the most significant for grasping and manipulating objects of the
considered size [10], and since its magnitude is such that it alone can be important
enough to perturb the manipulation of micro-objects. This long-range force is active
for separation distances in the order of the radius of the manipulated object.

A significant decrease in the magnitude of surface forces was observed due to
the presence of surface roughness [11–13]. In micromanipulation the handled ob-
ject is in contact with the gripper and it is unavoidable that the surface asperities
on the contacting surfaces are crushed, to some extent, due to the applied grasping
force. The resulting change in the surface topography by the flattening of the sur-
face asperities during micromanipulation can give rise to an increase in the contact
adhesion. The prime purposes of this work are to contribute to the understanding of
how the induced deformation of the contacting rough surfaces influences the elec-
trostatic adhesion force and to gain some insight into the physics of the evolution of
electrostatic adhesion during micromanipulation by an adapted multi-physics com-
putation. Our intention is to show that incorporating the plastic deformation of the
surface roughness in the study of the contact adhesion can account for a signifi-
cant increase in electrostatic adhesion, which can be responsible for experimental
release problems.
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The computational work can be divided into two parts, coupled unilaterally. The
first one involves the computation of the elastic–plastic deformation of surface as-
perities during micromanipulation. The second part aims at the evaluation of the
variation of the electrostatic contact adhesion during micromanipulation, based on
the deformation of the surface asperities using an electrostatic numerical model.
This unilateral coupling of the electrostatic simulations introduces the assumption
that the electrostatic force levels are much smaller than the ones necessary to deform
the surface asperities, therefore, the electrostatic forces and their variations do not
influence the deformation obtained (this will be confirmed later). This assumption
is not obviously verified for all mechanical phenomena, since electrostatic forces
can have an influence on the frictional behavior of a surface, for example [14]. The
electrostatic adhesion forces on the surface asperities in the initial, undeformed and
in the final, deformed configurations are calculated and compared to evaluate the
variation of their magnitude during micromanipulation.

This study is presented as follows. Section 2 deals with the mechanical problem
of the deformation of the gripper arm during micromanipulation on the scale of the
object (the macroscale) and on the scale of the surface roughness asperities (the
microscale). In Section 3 the results of the electrostatic simulations valid for the
microscale are presented and discussed. Based on the numerical results, analytical
models using simple geometrical approximations are set up for the evaluation of
electrostatic adhesion force in the initial and the deformed configurations of the
surface asperities. Section 4 brings a discussion on the assumptions used in this
study and on their implication on the results and trends obtained, explaining why the
computed increase in the electrostatic adhesion force due to the plastic deformation
of the surface asperities is believed to be a lower bound of the one experienced in
real-life applications. The outlook of this study is presented in Section 4 as well.

2. Contact Deformation Modeling

This part of the work addresses the problem of the evaluation of the deformation
of a gripper arm made of pure nickel during manipulation. Two numerical models
were set up on two different scales for this purpose. A macroscale contact model
(Section 2.1) applicable to the scale of the manipulated object was used to evaluate
the deformation of the gripper arm when realistic squeezing force levels are applied
to grab spherical objects with sizes ranging from 10 µm to 1 mm. The magnitude of
the obtained macroscopic deformation gave an indication for the deformation levels
to be applied in the microscale contact model applicable to the level of the surface
roughness asperities.

A microscale model (Section 2.2) was used to determine the deformed shapes
of the model roughness asperities considering the chosen deformation level. The
results of the microscale model were the input data for the electrostatic simulations
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that determine the electrostatic adhesion force in the contact. This separation of
scales was adopted to allow computing the considered problem.

2.1. Macroscale Contact Model of Micromanipulation: Surface Roughness
Deformation Estimate

This numerical model is set up on the scale of the manipulated object, which was
assumed to have a perfect spherical geometry with a radius varying in the range of
sizes of the potentially manipulated objects Robj = [10 µm, . . . ,1 mm] [15]. For the
sake of simplicity and computational efficiency the roughness of both the surfaces
of the gripper arm and the manipulated object was neglected on the macroscale.

The gripper arm was considered to be made of pure nickel and was modeled
as a deformable body having a perfectly flat frictionless contact surface. Frictional
effects were not taken into account in this study in order to reduce the complexity
of the numerical models and to ensure computational efficiency.

In the numerical model an isotropic rate-independent hardening behavior of pure
nickel, obeying Ludwik’s equation (1), was assumed.

σv = σ0 + Kκn, (1)

where σv (MPa) stands for the current yield limit, σ0 (MPa) the initial yield stress,
K (MPa) the hardening coefficient, κ a measure of cumulative plastic strain and n

the hardening exponent of pure nickel. The elastic–plastic parameters of the model
were calculated to fit the experimental stress–strain curve extracted from uniaxial
tension measurements on polycrystalline pure nickel [16]. The considered parame-
ter set for the pure nickel material was: the Young’s modulus E = 207 GPa, the
Poisson’s coefficient ν = 0.31 and σ0 = 59 MPa, K = 1165 MPa, n = 0.56. The
obtained elastic and plastic parameters set was compared with other works [17–21]
reporting data on the hardening behavior of pure nickel and were found to be in
good agreement.

The manipulated spherical object was considered to be undeformable and was
modeled by a rigid body (this assumption will be validated later).

The applied squeezing force varied in the range of the real manipulation force
F = [1 mN, . . . ,600 mN] [15]. Considering the symmetry of the problem the fi-
nite element meshes were two-dimensional (Fig. 1) and were built from 8 noded
elastic–plastic axisymmetric elements capable of handling finite deformations. The
models consisted of more than 33 500 degrees of freedom to be able to reproduce
with high precision the stress and plastic strain evolutions during the simulation. In
the simulation the side nodes of the mesh were constrained in the horizontal direc-
tion, the deformable body was constrained to move upwards to come into contact
with the rigid object, for which a fixed position in space was assumed. The nodes on
the bottom side of the model were not constrained in the horizontal direction. The
geometrical size of the meshes in all cases was chosen sufficiently large such that a
homogeneous stress distribution at the boundary of the model was obtained. A finite
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Figure 1. The two considered contact models set up on different scales. Left: macroscale model of
the micromanipulation considering realistic loading conditions and an axisymmetric description with
the manipulated object modeled as a rigid (undeformable) body. F0 is the manipulating force, Robj
the radius of the manipulated object. Right: microscale contact model of the flattening of one surface
asperity on the surface of the gripper arm, using a plain strain assumption. λ is the wavelength of the
sine function describing the asperity shape, the manipulated object is modeled as a rigid fiat plane.

element code was used for the simulation of the mechanical deformation in a con-
tact setting. Unilateral contact constraints on the contact interface were taken into
account using the high-precision augmented Lagrangian method with a Newton-
type continuous multiplier update procedure [22]. A finite deformation framework
based on the corotational formulation [23] was used, which has the advantage to be
capable of handling arbitrary large rigid rotations.

Two extreme contact configurations were analyzed on the macro-level:

Case A. The largest manipulated object with Rmax = 1 mm was combined with
the smallest manipulation force F min

0 = 1 mN. This macroscopic contact generates
the lowest contact stresses and corresponds to the least severe loading conditions.
The behavior of the material remains mainly elastic, with a contact area radius of
amacro = 1.653 µm close to the elastic contact radius approximated by the theory of
Hertz [24]. The obtained penetration of the rigid body was hmacro = 2.3 nm.

Case B. The smallest object with Rmin = 10 µm was manipulated with the largest
force level F max

0 = 600 mN. In this case the contact response was dominated by
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the plastic deformation of the gripper arm due to the high contact stresses. The
calculated macroscopic contact radius was amacro = 10 µm, almost 4 times that
based on the elastic approximation by the theory of Hertz. The penetration of the
rigid body was also strongly increased and became comparable to the radius of the
sphere with hmacro = 10 µm.

In both theoretical contact cases studied the finite deformation of the gripper arm
was observed. In micromanipulation it is necessary to squeeze objects in order to
hold them firmly. Case A, taking the largest object with the smallest gripping force
most probably gives a lower bound to the contact stresses and the deformation of
the gripper arm in the macroscale model with respect to the real configuration.

2.2. Microscale Rough Contact Model

In the present investigation numerical simulations are used to obtain the exact solu-
tion of the semi-coupled mechanical–electrostatic problem on the microscale, since
no analytical solution is available. This allows to evaluate the influence of the plastic
deformation of the surface roughness on electrostatic contact adhesion. The objec-
tive of this section is the modeling of the elastic–plastic deformation of the surface
asperities on the gripper arm during micromanipulation. For this purpose, a numer-
ical model was defined on the scale of the surface roughness asperities, i.e., on the
microscale.

A brief review of the rough surface models is presented in order to provide
motivation for the choice of the surface roughness representation used here. The
roughness of a real surface has a multi-level nature calling for multi-scale descrip-
tions in the numerical models. In a most general fashion a roughness profile can be
considered as the convolution of single profiles with various wavelengths and differ-
ent amplitude to wavelength ratios. The description of the experimentally observed
surface roughness in a numerical model depends on the physics involved.

Some numerical works considering rough surface contact address the problem
of cross-property connections [25], such as the variation of contact conductance
[26]. Most frequently, in the mechanical simulation of rough surface deformation,
a purely elastic response of the material is considered [25, 27]; and depending on the
modeled problem a fair agreement between experimental and numerical results can
be found. One family of models considers a single-level or multi-level description
using asperities with statistical height distribution, such as initially proposed in [28].
Another type of model uses the fractal description of the surface roughness. The
latter has been applied, for example, to the surface of polycrystalline Si for MEMS
applications [29, 30] and for ns-C films [31]. Some complementary approaches to
the present work should be mentioned, in which semi-analytical methods were used
to evaluate the deformation of the surface roughness and the contact adhesion with
a fractal description, with the assumption of a perfectly plastic material behavior
[32, 33].
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Unlike these works, the approach presented here is fully computational, and in-
corporates an experimentally measured material hardening behavior, as well as the
explicit computation of the plastic deformation of the model surface asperities. This
approach is thus complementary to the previous works. It avoids a priori postulated
assumptions regarding the plastic behavior of the material, but due to computa-
tional limitations a fractal description of the surface roughness cannot be adopted
in the present numerical scheme, which implies the use of a more simple roughness
representation.

The surface roughness was chosen to have the simplest representation here, ap-
proximated by a sine function yi(x) = Ai sin(2π/λix), considering only the first
level of a protuberance-on-protuberance type roughness description, as in [34–36].
This model has the advantage to be easily adaptable to studies for multi-level rep-
resentations, in which the shape of the surface asperities may change at different
levels, or for a fractal description. Note that the use of this single-level representa-
tion in the present investigation results in a higher bound to the initial electrostatic
adhesion force in the contact. Indeed, the higher order roughness present in self-
similar descriptions was neglected here. As a result, the initial contact surface was
larger than in the case of real surfaces, which yielded a higher electrostatic force
(as explained in Section 3). From the point of view of electrostatic simulations, the
same choice of a sinusoidal representation of the geometry was made in [37] to
compute the electrostatic repulsive energy between two rough colloidal particles.

For the sake of simplicity the amplitude Ai and the wavelength λi of each asper-
ity i of the surface roughness composed of n interconnected asperities were defined
to be the same in this study. The response of the surface roughness to deformation
was shown experimentally to depend on the shape of the roughness asperities [31].
In order to cover a large range of roughness asperity shapes considering their sinu-
soidal description, the ratio between the amplitude and the wavelength of the sine
function was varied. In the model the wavelength of the asperities was kept constant
λi = λ = 200 nm and 13 different values of the amplitude (Table 1) were chosen in
the range Ai/λ = [0.01, . . . ,0.85] from the bluntest to the sharpest profiles (Fig. 2).

The assumption that the size of the manipulated object is much larger than the
wavelength of the roughness profiles, i.e.,

Robj = [10 µm, . . . ,1 mm] � λ = 200 nm (2)

on the microscale generally holds for the majority of practical cases [38]. As a con-
sequence, in view of equation (2) some simplifying assumptions could be applied
to the microscale numerical contact model, such as (i) the contact radius of the ma-
nipulated object was considered to be infinite and this object was thus modeled as a
rigid flat plane on this scale and (ii) the neighboring roughness peaks were assumed
to deform homogeneously in the vicinity of a chosen roughness asperity.

If every roughness peak is assumed to deform in the same way on the considered
scale, as performed in [39], the characterization of the behavior of one rough-
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(a)

(b) (c)

Figure 2. Studied surface asperity shapes in the initial and in the deformed configurations. (a) Blunt
asperities A/λ = [0.01, . . . ,0.15]. (b) Sharper asperity shapes A/λ = [0.2, . . . ,0.45]. (c) Sharpest
asperity shapes A/λ = [0.55, . . . ,0.85].
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ness peak is sufficient using a periodicity condition. This is a common practice
to achieve a reasonable computational efficiency in numerical models of a rough
surface contact [30, 40]. Note that the results of some experimental and numeri-
cal works investigating the difference in the responses of single and multi-asperity
contacts on small scales showed that this assumption may alter the overall response
of the contact, particularly for cases when the contact penetration is comparable to
the height of the asperities [31, 39, 41–43]. Considering the finite deformation of
the gripper arm on the macroscale with realistic loading conditions, the flattening
di of a modeled roughness asperity i in the microscale model using the periodicity
condition was chosen to be di/Ai = 2/3 corresponding to a moderate deformation
on the scale of the surface roughness.

This set of assumptions, based on equation (2), on the microscale thus intro-
duces the assumption of a full separation of the length scales of the manipulated
object (the macroscale) from those defining the conditions of the contact between
the roughness peak and the object (the microscale), as shown in Fig. 1.

In the microscale numerical model the geometry was two-dimensional with a
plane strain assumption. Only the half of the sinusoidal profile was considered due
to the symmetry of its shape. All 13 finite element meshes with different Ai values
were built from 8 noded elastic–plastic finite deformation elements in the corota-
tional finite deformation description with more than 14 800 degrees of freedom.
The geometrical size of the meshes was chosen such that a homogeneous stress
distribution was found on the bottom side of the model. The left and right sides
of the deformable body were constrained in the horizontal direction in order to
represent the above-mentioned periodicity condition. The bottom side of the body
was free in the horizontal direction and moved upwards in the vertical direction
by a value of di = 2Ai/3 (the imposed flattening) using a displacement-controlled
simulation. Unilateral contact conditions without friction were used between the
contact nodes on the top side of the deformable body and a rigid horizontal plane
representing the manipulated object. The same elastic–plastic rate-independent con-
stitutive law with isotropic hardening was used for the nickel deformable body as
before.

In a contact setting, both contacting objects often suffer both elastic and plastic
deformations due to the high contact stresses. The assumption that the handled ob-
ject can be considered undeformable was verified to be valid. This was achieved by
simulating the microscale contact problem with a deformable object made of S45C
carbon steel (ES45C = 205 GPa, σ S45C

0 = 400 MPa). Indeed, the plastic deforma-
tion was found to take place only at the nickel roughness peak, because of the lower
elastic limit of pure nickel. In the contact considered although the elastic properties
of both materials were similar, due to its lower yield limit, pure nickel reached the
plastic domain, while the carbon steel was still showing an elastic contact response.
Moreover, the elastic deformation of the carbon steel object was also confirmed
to be negligible. The rigid body modeling of the handled object thus appears rea-
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Figure 3. Reaction force per roughness peak R generated by the flattening of the surface asperities
in the microscale model as a function of the amplitude to wavelength ratio A/λ of the initial asperity
shape.

sonable for objects made of materials with substantially higher yield limit than the
nickel base material of the gripper arm.

The initial and deformed shapes of the considered profiles are presented in Fig. 2.
The reaction force per roughness peak generated by the imposed flattening of the
asperities in the microscale contact simulations are depicted in Fig. 3. Note the non-
linear variation of the response of the roughness peaks as a function of their shape.
The elastic springback, i.e., the difference between the profile geometries at peak
load and after unloading due to the elastic relaxation of the material, was analyzed
for all considered geometries and was found to be small from the mechanical point
of view.

2.3. A Simple Link between the Microscale and the Macroscale Contact Models

The results of the microscale model were obtained for a chosen crushing of the
roughness profiles di , being a function of the initial amplitude Ai . Using a simple
assumption the chosen flattening of the surface asperities can be shown to yield
probably a lower bound to the real microscale deformation. Our purpose with the
following approximate estimation is merely to verify that the resulting reaction
forces from the microscale and from the macroscale models are in the same order
of magnitude for the prescribed microscale flattening. The proposed method is thus
not intended to correspond to a proper scale transition in the computational sense
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(i.e., homogenization methods), but to verify that the macroscale and the microscale
deformation states are consistent.

The essence of the verification is to check whether by filling uniformly the pro-
jected contact area Amacro obtained from the macroscale model with deformed
sinusoidal roughness peaks of the microscale model at the prescribed crushing, the
induced reaction force is of the order of magnitude of the macroscopic manipulating
force (equation (3)).

F�
micro =

∑

Amacro

Ri = Nasperity × Ri = O(F macro
0 ). (3)

Note that the approximation of having a uniformly crushed surface roughness in
the contact area Amacro limited by the macroscale contact radius corresponds to a
cylindrical rigid flat punching of the rough surface with an imposed crushing di .
Applying the above assumption to:

Case A, of the macroscale simulations (object–gripper contact mainly in the
elastic domain), the overall reaction force F�

micro = [1.37 mN, . . . ,5.2 mN] of the
4.3 × 104 deformed peaks filling the macroscopic contact area was in the same
order of magnitude as the macroscopic manipulating force. This suggests that the
assumed plastic deformation in the microscale contact problem matches the order
of magnitude of the real plastic deformation of the roughness peaks. It is empha-
sized that the loading conditions in Case A (largest object held with the smallest
manipulating force) are probably less severe than the practically used ones.

Case B (object–gripper contact showing mainly plastic response on the macro-
scale), the overall reaction force F�

micro = [50 mN, . . . ,190 mN] of the 1.57 × 106

peaks filling the macroscopic contact area was lower than the macroscopic manip-
ulation force. This means that the roughness peaks are crushed on average much
more severely in reality than in the microscale model. This interpretation is con-
firmed by the deep penetration of the object of around 10 µm, calculated in the
macroscale contact model. Consequently, considering the generally large contact
stresses in the macroscale micromanipulation model, most of the surface asperities
in the contact area can be assumed severely crushed. Unlike in the works reporting
surface asperity persistence at considerably smaller relative penetration with respect
to the height of the surface asperities (and sometimes in lubricated contact condi-
tions) [38, 40, 43], in the micromanipulation setup considered the surface roughness
is probably practically flattened, as in [44].

The force levels obtained from the microscale computation and upscaled by the
considered simple cylindrical fiat punch assumption remained for all considered
cases almost in the same order of magnitude as the macroscopic manipulation force.
However, the assumed number of contact points in the contact zone with similar as-
perity densities as on a Si polycrystalline surface [5] was an order of magnitude
larger than computed in [5], thereby resulting in an overall reaction force also an
order of magnitude higher than one would expect considering the asperity density.
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For a given macroscopically applied force, this means that the plastic deformation
of the surface asperities in the microscale problem is most probably a lower bound
with respect to the real micromanipulation setting, and the numerical results ob-
tained can be considered to give a lower bound to the surface asperity flattening.

Note that in the case of a complete treatment of the scale transition additional
computational difficulties would have to be considered. The interaction of the plas-
tic behavior of the material with the frictional behavior of a small scale contact,
involving features related to the dislocation activity in the material, may be of im-
portance [45]. Such an interaction could indeed play a role in the behavior of a
contact with the size considered here [46]. Moreover, the size effects related to
high strain gradients in the material, potentially generated by the sharp variation in
the geometry in the microscale contact, were recognized to have an influence on
the response of the microscale contact. This phenomenon is taken into account in
recent research works using higher-order strain gradient plasticity theories for ex-
ample [47, 48]. Proper scale transition assumptions would allow extrapolating these
effects to the higher scale contact behavior [49].

However, even though considering advanced contact and material constitutive
laws would result in a more complete numerical representation, considering (i) the
resulting complexity and (ii) the purpose and the investigated aspect of the contact
response at the considered scales, it is not crucial for this level of comparison. Ne-
glecting the aforementioned effects allowed the use of a relatively simple numerical
model on the microscale defined by a limited number of parameters, corresponding
to the ones used in the macroscale model. Probably some other assumptions related
to the contact geometry of the proposed method could be investigated and poten-
tially avoided to allow a deeper level of comparison (flat punch assumption on the
macroscale, neglecting roughness asperity interaction).

3. Electrostatic Simulation on the Micro-level

The output of the microscale mechanical simulations (the deformed shapes of the
roughness asperities) was used for the evaluation of the electrostatic adhesion force
between the gripper and the object at the release of the manipulated object. At con-
tact, some models (Johnson–Kendall–Roberts (JKR) [7, 50], Derjaguin–Muller–
Toporov (DMT) [7, 51]) provide closed-form expressions for the adhesion force
due to the interactions occurring in the contact area of rough elastic contacts. These
theories are obviously no longer valid in the considered problem of micromanipu-
lation which induces significant plastic deformation of the surface roughness on the
gripper arm. Contact adhesion was evaluated in rough contacts of deformable ob-
jects in the plastic regime by semi-analytical methods, however making a perfectly
plastic material assumption [32, 33].

To avoid these simplifying assumptions, the electrostatic computation was cou-
pled (unilaterally) to the mechanical simulation of the elastic–plastic deformation
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of the surface roughness using an experimentally measured hardening law of pure
nickel. The electrostatic adhesion force was calculated for two conductors: the grip-
per arm made of pure nickel and the manipulated object.

Let us briefly recall the source and the governing physics of the electrostatic
forces appearing in a contact. The thermodynamic equilibrium is the basis of the
metal–metal contact theory [52]. When two dissimilar metallic objects are brought
closer to each other, electrical interaction occurs before mechanical contact, charge
transfer takes place when the separation distance of the order of 100 nm is reached
due to the tunneling effect between the solids [53]. Each object acquires a certain
amount of charges proportional to their contact potential difference U , related to
the intrinsic properties of the materials and ranging generally from 0 V to 0.5 V
[54]. In the practical case of micromanipulation the potential difference between
the gripper and the manipulated object depends on the properties of the conducting
materials considered as

U = W1 − W2

e
, (4)

where W (eV) is the work function which only depends on the nature of the metal
and is governed by the Fermi level of the material, and e (C) is the electron charge.
The electrical potential in the volume around the two conductors at different contact
potentials obeys Laplace’s equation.

�U = 0. (5)

The interface between the two conductors can be seen as a capacitor (equation (6))
on which the potential difference is imposed.

Q = ε0εrS

z
U, (6)

where Q (C) is the charge, z (m) stands for the separation distance and S (m2) is
the contact area, ε0 (F/m) and εr are the permittivity of free space and the relative
permittivity of the environment, respectively. When the separation distance between
the two conductors is reduced, the electrostatic field �E increases along with the
number of charges Q on the surfaces.

�E = −�∇U, (7)

where E (V/m) is the electric field obtained from the gradient of U . The result is an
attractive (or repulsive) electrostatic pressure Pel (CV/m3) between the gripper and
the object.

Pel = ε0εrE
2

2
with E = �E · �n, (8)

with E (V/m) the electric field normal to the surface. The electrostatic force be-
tween two conductors are thus governed by the potential difference (materials), the
permittivity (surrounding environment) and the area of contact (contact geometry).
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In order to evaluate the electrostatic adhesion force in the rough surface model
of the microscale mechanical simulations, the Comsol commercial finite element
package was used to solve equation (5) with two-dimensional models. Each nu-
merical model consisted of more than 21 000 degrees of freedom. The electrostatic
simulation tool was validated in [12] using analytical models [10, 55, 56] and lit-
erature benchmarks [57, 58]. The simulations were performed at contact (in the
beginning of the release), i.e., at a chosen separation distance of z = 0.4 nm (as in
[54]) for the initial and the deformed profiles both at peak load and after unload-
ing (Table 1). The same electrostatic computations were conducted for different
separation distances. For all of them the obtained trends were found to be in good
agreement with the results presented in the following.

3.1. Analysis of Electrostatic Forces

The numerical results are manifold considering the distribution of charges and the
electrostatic force levels before and after the deformation of a roughness peak. The
small magnitude of the electrostactic interaction forces with respect to the me-
chanical forces necessary to deform the asperities (Table 1) confirms the unilateral
coupling of the electrostatic model to the microscale contact model. The results of
the numerical model show physically sound trends, the magnitude of the electro-
static force increases with an increase in the applied voltage (Fig. 4), and with a
decrease in the separation distance z.

Considering the influence of the initial shape of the studied profiles it was ob-
served that the electrostatic force decreases with the increase of the amplitude A

(for sharp geometries). The initial shape of the surface roughness has thus a signif-
icant influence both on the mechanical response to deformation (Fig. 2) and on the
magnitude of the electrostatic force on the asperity surface (Fig. 4).

The main concern of this study, i.e., the variation of the electrostatic force as a
consequence of the plastic deformation of the surface roughness, is considered in
the following. The multiplicative factor γ between the electrostatic forces acting on
the undeformed rough profile Finit and on the deformed profile Fdef was found to
be in the range

γ = Fdef

Finit
= [2, . . . ,20] (9)

for the considered cases depending on the ratio A/λ (Fig. 5). For the initially flat-
test peak the attractive electrostatic force before and after deformation was already
doubled, and the most important increase was observed for the sharpest asperi-
ties (with increasing A/λ). The significant increase in the electrostatic adhesion
force is related to the change in the distribution of the charges on the initial and
on the deformed shape of the surface asperities (confirmed in the following sec-
tion).

Figure 6 depicts the typical electrostatic force and charge distribution in the
initial and in the deformed configuration (for profile number 5 of Table 1). The
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(a)

(b)

Figure 4. Results of the electrostatic simulation. Electrostatic adhesion force before (solid lines) and
after deformation (dotted lines). Square marks stand for an applied voltage, of 0.1 V, triangle marks
for 0.3 V and circle marks for 0.5 V. (a) For deformed shapes at peak load. (b) For the unloaded
configuration.

electrostatic forces are concentrated at the peak of the undeformed asperity. The
deformed shape, however, has a portion with an almost flat surface (plateau) where
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Figure 5. Variation of the multiplicative factor γ of the initial electrostatic force in the deformed
configuration as a function of the amplitude to wavelength ratio A/λ of the initial asperity shape.
Solid lines correspond to numerical results, non-interconnected symbols stand for the prediction of
the closed-form expressions. Square symbols and circle symbols correspond to results at peak load
(maxload) and in the unloaded configuration, respectively.

(a) (b)

Figure 6. Charge and electrostatic force distributions in the undeformed (a) and in the deformed
(b) configuration of the surface asperity profile number 5 in Table 1. In the undeformed configuration
the charges are concentrated on the tip of the asperity, after deformation they are nearly uniformly
distributed on the formed fiat surface.

the forces are uniformly distributed. Since electrostatic forces rapidly decrease
with the separation distance, in the majority of cases the sides of the profile have
almost no influence on the total electrostatic adhesion force. An exception was
formed for blunt profiles with values of A/λ < 0.01 where the side effects cannot
be neglected anymore. Consequently, the length of the formed plateau is a major
parameter determining the overall electrostatic force in the deformed configura-
tion.
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3.2. Closed-Form Estimates for Electrostatic Forces

Considering the relatively simple charge and electrostatic force distributions in the
initial and in the deformed configuration observed in the numerical model (Fig. 6)
two closed-form expressions are proposed for the evaluation of the overall electro-
static adhesion force.

In the undeformed configuration, the sinusoidal profile has a curvature c = Aω2

which can be approximated by a circle of radius r

r = 1

Aω2
= λ2

4π2A
. (10)

The electrostatic force acting on the sinusoidal profile was evaluated using an ana-
lytical approximation for a cylinder–plane contact [59]:

Finit (N/m) = ε0εrλU2

√
32Az3/2

. (11)

In the deformed configuration the analytical expression was derived from the model
for contact between two infinite planes [10], adding the length of the plateau l as
parameter:

Fdef (N/m) = ε0εrU
2

2z2
l. (12)

Taking the highest point of a roughness profile atop, the plateau length l was defined
by all the points within a vertical cutoff distance of 0.4 nm from atop. Note that the
unloaded profiles were slightly curved due to the elastic springback, a difference
which influenced the resulting electrostatic forces, especially for the blunt asper-
ities. The length of the plateau at peak load l

peak
i increases until A/λ = 0.2 and

then decreases while the length of the plateau in the unloaded configuration lunload
i

taking into account the elastic springback globally decreases with increasing Ai/λ

values (Table 1).
Figure 7 shows that the predictions of the numerical simulations and of the ana-

lytical expressions are in good agreement. The results of the closed-form expression
in the initial configuration are more reliable for smaller than for larger A/λ ratios
since the geometrical approximation of using a circle matches better the sinusoidal
profiles in that case. The error is less than 10% for profiles with A/λ < 0.4.

There is less than 5% error for most A/λ ratios in the deformed configuration at
peak load. The closed-form expression becomes unreliable only for A/λ < 0.01 due
to side effects on the blunt profile (non-negligible contribution of the sides of the
profile to the electrostatic force). The error is larger in the unloaded configuration
due to the elastic springback because the calculation of the plateau length is less
accurate in this configuration but the side effects are also more important. The good
agreement between the results of the analytical expressions and of the numerical
simulations in both cases confirms that for most profiles the presence of the plateau
plays the significant role and the side effects can be neglected.
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(a)

(b)

Figure 7. Percent error between the results of closed-form expressions and the numerical simulations.
(a) For initial surface asperity shapes. (b) In the deformed configuration at peak load (triangle marks)
and in the unloaded configuration (circle marks).

From the above closed-form approximations based on simple representations of
the asperity geometry in the initial (cylinder–flat plane assumption) and in the de-
formed (flat segment–flat plane assumption) configurations it is possible to estimate
the magnification factor γ of the electrostatic adhesion force if the shape of the ini-
tial profiles and the length of the plateau formed are known:

γ = 2l

λ

√
2A

z
. (13)
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The good correlation between the numerical results and the prediction of the closed-
form expressions gives a graphical confirmation (Fig. 5) of our interpretation of the
underlying physics of the studied source of potential release problems in micro-
manipulation by contact. The plastic deformation of the surface roughness on the
deformable gripper arm (due to the macroscale manipulating force) results in the
formation of plateaus on the peaks of the surface asperities. The presence of these
plateaus changes the charge distribution on the contact surface leading to an in-
crease in the electrostatic adhesion force in the contact.

Note that the application of the simple linking assumption (discussed in Sec-
tion 2.3) showed that the imposed flattening of the surface asperities is probably
a lower bound to the magnitude of the microscale deformation in the real micro-
manipulation setting. The degree of flattening of the surface roughness defines the
length of the plateau formed on the peak of the surface asperities, which is directly
related to the factor of increase in the electrostatic adhesion force. This underlines
the fact as well that the computed γ is a lower bound to the real-life increase in the
electrostatic contact adhesion due to the plastic flattening of the surface asperities
during micromanipulation.

4. Conclusions and Perspectives

An important effect of the plastic deformation of the surface roughness on elec-
trostatic contact adhesion was demonstrated using a semi-coupled multi-physics
numerical model, since the initial electrostatic adhesion force on the asperities was
magnified by a factor γ = [2, . . . ,20] after plastic deformation. The small magni-
tude of the electrostatic interaction forces with respect to the forces necessary to
deform the surface asperities (Table 1) confirmed the validity of the assumption
of unilateral coupling of the electrostatic model to the microscale contact model.
The observed effect clearly contributes to the difficulty to release objects when the
squeezing manipulation force is released. The key role of the fiat surface formed
on the deformed profiles on the increase of electrostatic forces was identified and
confirmed using a closed-form approximation of the electrostatic forces based on
simplifying geometrical assumptions.

The obtained magnifying factor γ of the electrostatic adhesion force related to
the plastic deformation effect seems to be merely a lower bound of the real-life in-
crease. As pointed out before the higher contact point density (with respect to [5])
and the relatively small imposed flattening in the microscale model of di = 2Ai/3
give a lower bound to the magnitude of the deformation of the surface asperities
with respect to the real micromanipulation setting. Moreover, in the case of real
surfaces, considering the predictions of the numerical model used for the evaluation
of the electrostatic forces, the charges would concentrate on the tip of asperities
of the highest order roughness, thereby further decreasing the initial electrosta-
tic forces. During deformation more than one level of asperities (considering the
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protuberance-on-protuberance model) can be crushed [60] and γ could reach even
higher values than the ones reported here.

These observations lead to the conclusion that decreasing the plastic deformation
of surface asperities could substantially reduce release problems related to electro-
static adhesion force in micromanipulation by contact (e.g., application of coatings
with specific elastic behavior), which is a useful information for the design of such
devices.

In the presented study only the electrostatic adhesion force was computed to fo-
cus on its particular effect, the other contributions to the adhesion force were not
considered in this first approach. This allowed to study the semi-coupled mechan-
ical and electrostatic problems. In future works a specific effort will be devoted to
perform a similar coupling of van der Waals and capillary forces to the proposed
mechanical problem. This would at that stage allow comparing work of adhesion
and surface energy quantities with experimental results. Indeed, since the work
of adhesion and surface energy quantities generally correspond to a more general
definition of adhesion measured experimentally [1] including all potential contribu-
tions, they cannot be computed from the presented numerical results. The long term
goal thus is to group the results obtained for these three forces in order to evaluate
the influence of the plastic deformation of surface asperities on contact adhesion in
a more global sense. These numerical results could then be compared to the pre-
diction of classical theories of contact adhesion, which defines a complementary
research direction and even to experimental data, which would be particularly in-
teresting.
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