A Sufficient Condition for Force-Closure Grasps Synthesis of 3D Objects Sahar El-Khoury and Anis Sahbani # Problem Statemen # Proposed Approach ### \//HEN DOES A GRASP HAVE FORCE-CLOSURE? According to the definition of Salisbury and Roth, a grasp has **force-closure** if and only if any external wrench can be balanced by the wrenches at the fingertips \Rightarrow when the primitive contact wrenches resulted by contact forces at the contact points positively span the entire 6-dimensional wrench space. ## CAN 6D CONTACT WRENCHES BE REPRESENTED IN A 3D SPACE? - \bullet A primitive contact wrench is defined by : $w=(f;p\times f).$ - Using Pl \ddot{u} cker coordinates, w can also be seen as a representation of the line of action L_f of the force f applied at the point p. ## KEY IDEAS - All lines through one point are of rank 3. - When all lines meet one line, they are of rank 5. - Wrenches associated to 3 non-aligned contact points are of rank 6 and thus form a basis of the 6D wrench space. #### THE SUFFICIENT CONDITION ASSUME that : - ullet the grasp of n-1 non-aligned fingers is not force-closure. - $\{b_i\}_{i=1..6}$ is a 6-dimensional basis associated to their corresponding contact wrenches. \mathbf{S} UFFICIENT condition for a n-finger force-closure grasp is that there exists a contact wrench γ such that : - $\bullet \hspace{0.1cm} \gamma$ is inside the linearized friction cone of the nth finger - $\gamma = \sum_{i=1}^{k} \beta_i b_i, \ \beta_i < 0 \Rightarrow \gamma = B\beta \Rightarrow \beta = B^{-1}\gamma$ where: $B = [b_1, b_2, ..., b_6]$ is a 6×6 matrix. $\beta = [\beta_1, \beta_2, ..., \beta_6]^T$ is a 6×1 strictly negative vector. SIMPLE multiplication by B^{-1} permits to test if a contact wrench γ , and consequently the location of the nth contact point, ensures a force-closure grasp. # Results and Conclusions TESTS are accomplished on a sphere model, represented by its 762 vertices and its respective normal directions. Two experiments are performed: #### • Depends on the quality of the first n-1 generated fingers locations. Their quality should be above a threshold. • In the worst case, when the n-1 fingers are generated randomly, our method finds 18.7% of the force-closure grasps. #### APIDITY test: Depends on the quality of the first n-1 generated fingers locations. In the worst case, our force-closure computation time is four times faster than the convex-hull one. TAB. 1 – Completeness results for different thresholds 0 = Th0 < Th1 < Th2 < Th3 < Th4. | | Number of Solutions (s) | | | | |-----------|-------------------------|-----|---------|--| | threshold | classic | new | n/c | | | Th0 | 315 | 59 | 18.73% | | | Th1 | 349 | 82 | 23.5 % | | | Th2 | 366 | 96 | 26.23 % | | | Th3 | 392 | 118 | 30.1 % | | | Th4 | 419 | 149 | 35.56 % | | TAB. 2 – Force-Closure grasp computation time | | Time (ms) | | | | |-----------|-----------|------|---------|--| | threshold | classic | new | n/c | | | Th0 | 3.74 | 0.93 | 24.87 % | | | Th1 | 3.60 | 0.76 | 21.11 % | | | Th2 | 3.43 | 0.68 | 19.83 % | | | Th3 | 3.20 | 0.53 | 16.56 % | | | Th4 | 2.84 | 0.45 | 15.90 % | | OUR aim is to compute as fast as possible *n*-finger force-closure grasps for a given 3D object. THE proposed force-closure sufficient condition is not necessary. Our method sacrifices completeness in favor of fast computation. AST computation is due to reducing the force-closure test to an inverse matrix calculation. N the worst case, our approach is four times faster than the convex-hull method.