
Anticipatory Learning Classifier Systems and

Factored Reinforcement Learning

Olivier Sigaud1, Martin V. Butz4, Olga Kozlova1,2, and Christophe Meyer3

1 Université Pierre et Marie Curie - Paris6
Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS FRE 2507,

4 place Jussieu, F-75005 Paris, France
Olivier.Sigaud@isir.fr

2 Thales Security Solutions & Services, Simulation
1 rue du Général de Gaulle, Osny BP 226

F95523 Cergy Pontoise Cedex, France
Olga.Kozlova@thalesgroup.com

3 Thales Security Solutions & Services, ThereSIS Research and Innovation Office
Route départementale 128

F91767 Palaiseau Cedex, France
Christophe.Meyer@thalesgroup.com

4 University of Würzburg
Röntgenring 11

97070 Würzburg, Germany
mbutz@psychologie.uni-wuerzburg.de

Abstract. Factored Reinforcement Learning (frl) is a new technique
to solve Factored Markov Decision Problems (fmdps) when the struc-
ture of the problem is not known in advance. Like Anticipatory Learning
Classifier Systems (alcss), it is a model-based Reinforcement Learn-
ing approach that includes generalization mechanisms in the presence
of a structured domain. In general, frl and alcss are explicit, state-
anticipatory approaches that learn generalized state transition models to
improve system behavior based on model-based reinforcement learning
techniques. In this contribution, we highlight the conceptual similarities
and differences between frl and alcss, focusing on the one hand on
spiti, an instance of frl method, and on alcss, macs and xacs, on the
other hand. Though frl systems seem to benefit from a clearer theoret-
ical grounding, an empirical comparison between spiti and xacs on two
benchmark problems reveals that the latter scales much better than the
former when some combination of state variables do not occur. Based on
this finding, we discuss the mechanisms in xacs that result in the better
scalability and propose importing these mechanisms into frl systems.

1 Introduction

This paper is about two classes of explicit state-anticipatory systems [1] that
learn generalized state transition models to improve their behavior based on
model-based reinforcement learning techniques.

G. Pezzulo et al. (Eds.): ABiALS 2008, LNAI 5499, pp. 321–333, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 O. Sigaud et al.

On the one hand, Learning Classifier Systems (lcss) are rule-based systems
where the rules (called classifiers) are learned from experience. Due to genetic
algorithm-based generalization mechanisms, lcss were shown to build compact
representations of Markov Decision Problems (mdps) and learn to behave op-
timally. Anticipatory Learning Classifier Systems (alcss) [2] deviate from this
classical framework on one fundamental point. Instead of [Condition] → [Action]
classifiers, they manipulate [Condition] [Action] → [Effect] classifiers, where the
[Effect] part represents the expected effect of the action in all situations that
match the [Condition] part of the classifier. A set of classifiers constitutes a model
of transitions, as it is called in the Reinforcement Learning (rl) literature Thus,
alcss are an instance of model-based rl architectures—a category of systems
whose prototype is the Dyna architecture [3]. As a result, alcss can be seen as
combining two crucial properties of rl systems: Similar to the Dyna architec-
tures, they learn a model of transitions, which endows them with anticipation
and planning capabilities and can speed up the learning process. Similar to clas-
sical lcss, they benefit from generalization mechanisms, which enable them to
build much more compact models than tabular Dyna architectures [2,4].

On the other hand, in the rl literature, the Factored Markov Decision Pro-
cesses (fmdps) framework was introduced to represent large and structured mdps
compactly [5]. In this approach, a state is implicitly described by an assignment
of values to some set of state variables—a representation that shares strong sim-
ilarities with the one used in lcss where the variables are termed “attributes”.
But the structure of the model of transitions is assumed to be known in fmdps,
which stands in contrast with the alcs framework where this structure is learned
from experience.

sdyna [6,7] is a family of systems that perform rl in the fmdp framework
where the structure of the model of transitions is learned from experience—
an approach that we call Factored Reinforcement Learning (frl). Thus, like
alcss, frl systems are model-based rl systems endowed with a generalization
capability.

In this contribution, we examine the conceptual similarities and differences
between two alcss named macs and xacs on the one hand, and one instance of
sdyna named spiti on the other hand. Then we perform an empirical comparison
between xacs and spiti based on two benchmark problems, namely Maze6 and
Blocks world. The comparison reveals a conceptual problem in the structured
dynamic programming algorithm of spiti, svi, from which xacs does not suffer.
As a consequence, we discuss the possibility of improving frl systems based on
xacs mechanisms.

The paper is organized as follows. In the next section, we give some back-
ground about lcss, alcss, fmdps, frl and, in particular, spiti. Then in Sec-
tion 3, we highlight conceptual similarities and differences between spiti, macs
and xacs. In Section 4, we present the experimental study. This comparison
shows that xacs outperforms spiti when the representation used to describe
states of the problem can give rise to impossible combinations of values, which
is discussed in Section 5 before concluding.

Anticipatory Learning Classifier Systems and FRL 323

2 Background

2.1 Learning Classifier Systems

Learning Classifier Systems (lcss) [8] were invented by Holland [9] in order
to model the emergence of cognition based on adaptive mechanisms. In lcss,
knowledge is represented by a set of rules called population of classifiers, which
is evolved by adaptive, usually evolutionary learning mechanisms. In Holland’s
original work, the cognitive part of the system was implemented by a list of
internal messages that related the perception of an agent to its actions through
an eventually complex message passing process.

Wilson published two radically simplified versions of the initial lcs archi-
tecture, named zcs [10] and xcs [11], in which the list of internal messages was
removed. These (now standard) lcss use condition-action classifiers and combine
rl methods with Genetic Algorithms (gas) to learn a compact rule sets.

The [Condition] part of classifiers is a list of tests. There are as many tests
as attributes in the problem description, each test being applied to a specific
attribute. In the most common case where the test specifies a value that an
attribute must take for the [Condition] to match, the test is represented just by
this value. There exists a particular test, denoted “#” and called “don’t care”,
which means that the [Condition] part of the classifier will match whatever the
value of the corresponding attribute. At a more global level, the [Condition]
matches if all its tests hold in the current situation. In the case of matching, the
classifier may be used to determine current behavior.

2.2 Anticipatory Learning Classifier Systems

Riolo [12] was the first to publish an explicitly anticipatory lcs. His system,
Cfsc2, was directly inspired by the original lcs architecture of Holland [13]
with internal messages.

The first alcs designed after Wilson’s simplifications of the original lcs ar-
chitectures [10] was acs [14,15]. Central to acs, the alp (Anticipatory Learning
Process) algorithm is the formal counterpart of Hoffmann’s psychological theory
of Anticipatory Behavioral Control [16]. acs was later extended by Butz to be-
come acs2 [17,18] and finally xacs [19]. In parallel, Gérard proposed yacs [20]
and macs [21].

The key difference between lcss and alcss lies in the presence of an [Effect]
part in the latter systems. In acs, acs2 and yacs, the [Effect] part of each
classifier tells which attributes do change and which do not given a certain action
is executed in a given situation. To represent this, the [Effect] part can contain a
“=” symbol, which means that the corresponding attribute does not change. For
instance, classifier [#0#1] [0] [=10=] predicts that situation [1031] changes
into situation [1101] given action [0] is executed, while situation [2011] is
predicted to change into [2101]. By contrast, macs uses in the [Effect] part
a “?” symbol, which denotes that the classifier cannot predict the value of the
considered attribute. The addition of this new symbol results in the capacity to
predict the value of each attribute separately at the next time step.

324 O. Sigaud et al.

2.3 Factored Markov Decision Processes

The fmdp framework was invented independently from research on lcss, but it
is based on an equivalent formalism. Indeed, an fmdp is described by a set of
state variables S = {Xi...., Xn}, where each Xi takes value in a finite domain
Dom(Xi). A state s ∈ S assigns a value xi ∈ Dom(Xi) to each state variable Xi.
These variables are the formal counterpart of attributes in the lcs framework.

fmdps utilize dependencies between variables, defined using Dynamic
Bayesian Networks (dbns) [22], to compactly represent the transition and re-
ward functions of structured mdps.

The model of the transition of the fmdp is defined by a separate dbn model
Ta = 〈Ga, {P a

X1
, . . . , P a

Xn
}〉 for each action a. Ga is a two-layer directed acyclic

graph whose nodes are {X1, . . . , Xn, X ′
1, . . . , X

′
n} with Xi a variable at time t and

X ′
i the same variable at time t + 1. The parents of X ′

i are denoted Parentsa(X ′
i)

with Parentsa(X ′
i) ⊆ X . The transition model Ta is quantified by Conditional

Probability Distributions (cpds), denoted P a
Xi

(X ′
i|Parentsa(X ′

i)), associated to
each node X ′

i ∈ Ga. In practice, these cpds can be represented as tables, as rules,
as a set of decision trees, or as decision diagrams. In each case, the representation
gives the probability distribution of each X ′

i given the values of Parentsa(X ′
i). In

the case of rules or tables, the generalization property comes from the fact that
only the variables belonging to Parentsa(X ′

i) are used to represent the distribu-
tion over X ′

i. This corresponds to using a “#” for the attributes that correspond
to all other variables in the lcs representation.

Given this representation of the transition function and a similar compact rep-
resentation of the reward function, different dynamic programming algorithms
such as svi and spi for trees [23] and spudd for decision diagrams [24] were
shown to converge to the optimal policy [23] while using a representation that
is exponentially smaller than the tabular one.

2.4 Factored Reinforcement Learning and spiti

In fmdps, the transition function expressed as a set of cpds is considered known.
But for most complex problems, designing these probability distributions by
hand is difficult, if not impossible. And to represent them compactly makes
things even more difficult.

An alternative consists in learning from experience a model of the transition
function under a compact form. If learning the model and dynamic program-
ming backups are performed simultaneously, then this approach is the structured
counterpart of indirect rl systems, whose prototype is the dyna architecture.

This insight led to the design of sdyna as a structured version of the dyna
architecture where the model of transitions and of the reward are learned from
experience under a compact form [7]. spiti is a particular instance of sdyna. It
uses an incremental version of svi to perform dynamic programming and learns
the model of transitions in the form of a collection of decision trees using the
Incremental Tree Induction (iti) algorithm [25].

Anticipatory Learning Classifier Systems and FRL 325

3 Systems and Comparisons

3.1 Comparing SPITI with MACS

Both macs and spiti call upon a model-based rl process and are endowed with
a generalization property that makes them able to address large mdps without
prior knowledge of the structure. Furthermore, their representations of the model
of the transitions have a similar structure. Indeed, consider an agent in a grid
world that perceives whether the eight surrounding cells (starting North and cod-
ing clockwise) contain a wall or not (see Figure 1). The formalism in acs, acs2,
xacs and yacs is able to represent regularities such as“when the agent perceives
a wall to the north, whatever it perceives in any other direction, going north
does not produce any sensory change”, which may be represented by the follow-
ing classifier if the first attribute corresponds to the value of the North sensor:
[1#######] [North] [========]. By contrast, macs can represent regulari-
ties between different attributes with a classifier such as [1########] [Left]
[??1??????], stating “when the agent perceives a wall to the north, and turns
left, it will perceive a wall on its right”.

Thus, on the one hand, macs can represent additional regularities since it can
detect regularities between different attributes. However, on the other hand, it
only predicts one attribute at a time, whereas the predictions of other alcss can
be more compact.

Experimental results on model compactness and convergence speed of macs in
grid worlds have shown that it builds a slightly more compact model than yacs,
which itself was building models four times more compact than an early version
of acs [21]. Furthermore, macs was building this model three times faster than
yacs, and nine times faster than the early version of acs counting the number
of iterations.

Interestingly, its unique representation of the [Effect] part makes macs more
similar to spiti than any other alcs. Indeed, in macs, the value of each at-
tribute is anticipated separately for each action as a function of a [Condition]
part containing variables defining the previous state of the model whereas in
spiti the value of each state variable is anticipated separately for each action as
a function of a tree representing the possible combinations of variables defining
all previous states of the model. Thus, one classifier in macs is similar to one
branch in the decision tree in the model of transitions of spiti.

Moreover, macs is the only alcs that does not call upon a ga. Instead, to
learn the model of transitions it relies on the combination of generalization and
specialization heuristics that collaborate to converge towards a compact and
accurate model of transitions. This mechanism can be compared more easily
with the iti algorithm used in spiti, which relies on the χ2 information metric
to grow a decision tree incrementally.

However, beyond these similarities, macs and spiti differ in several points.
First, macs represents a deterministic transition model whereas spiti models a
stochastic process through a distribution of probabilities of transition. Secondly,
as stated above, building a compact model of the transition function in macs

326 O. Sigaud et al.

relies on a complex combination of heuristics whereas spiti calls upon the well es-
tablished iti algorithm. Thirdly, the model of transitions in macs is represented
as a set of classifiers and the value function is tabular, whereas spiti implements
the model of transitions, the value function and the policy as decision trees. This
results in faster algorithmic information access. Finally, and most importantly,
in macs the dynamic programming component of model-based rl is applied to
a tabular representation of states, whereas spiti calls upon svi to perform this
computation compactly—with guarantees of convergence to optimality as far as
the model of transitions is perfectly accurate. This computation is very efficient
in practice.

All the differences above speak in favor of spiti that seems mathematically
better grounded than macs and benefits from efficient algorithms. Thus an em-
pirical comparison seems to be pointless. As a matter of fact, we did not perform
any experiments comparing spiti against macs, since spiti was shown to per-
form well on problems that are out of reach of macs [6,7].

Among these differences, the most crucial one is the fact that macs does not
generalize the models of the reward and the value functions over states. Instead,
these models are represented by a table giving a value for each encountered
state, which prevents its usage for very large state space problems. Although it
shares less similarities with spiti, xacs is another alcs that does not suffer from
this crucial problem. And, quite interestingly, the experimental comparison that
we perform after presenting xacs below reveals that it is endowed with a key
property that makes it more efficient than spiti in the context of large problems
where a lot of combinations of state variable values cannot occur.

3.2 Presentation of XACS

The xacs system was developed to overcome the deficiency of not generalizing
the value function estimates in macs [19]. xacs combines two lcss—the gen-
eralizing state transition learner acs2 [18] and the generalizing function learner
xcs, which learns generalized value function estimates in xacs. It was shown
that xacs can be robustly applied to blocks world problems, in which previous
overgeneralization issues in acs2 were overcome [19].

Essentially, acs2 learns a generalized representation of the encountered state-
transition function of a problem. It has been shown to reliably learn in various
discrete problem domains, being able to ignore irrelevant perceptual attributes,
handling noisy inputs, or stochastic state transitions. Knowledge is represented in
the aforementioned [Condition], [Action] → [Effect] rules. The rules are learned
by a combination of a heuristic, which specializes the rule structures, and a
genetic rule generalization mechanism.

The xcs system may be the most well-understood and used lcs to-date. It
has been shown to be efficiently applicable in Boolean function problems, real-
valued function problems, reinforcement learning problems, and mixed domains
including datamining classification [11,26]. xcs learns based on a combination of
gradient-based value approximation and genetic algorithm-based rule structure

Anticipatory Learning Classifier Systems and FRL 327

learning. In combination with acs2, xcs learns a generalized representation of the
state-value function of the encountered reinforcement learning problem. In this
case, value approximations are updated similar to the dyna architecture [19,3].

During learning, xcs and acs2 create their initial rules by means of a covering
mechanism, which creates rules with matching conditions given no rules currently
match the perceived problem state. For compaction purposes, both systems rep-
resent redundant identical rules in one macro-classifier rule [11]. The rule struc-
turing mechanisms of either system basically assure that the whole perceived
problem space is covered and rules that cover unsampled problem subspaces are
forgotten (deleted) over time. Further details on the involved mechanisms as well
as theoretic learning bounds can be found in the literature [19,26,27].

During goal-directed behavior, xacs predicts possible next problem states
using the model from its acs2 component, estimates the values of these antici-
pated states by means of its xcs component, and finally conducts its behavioral
decision based on these estimates.

4 Experimental Study

4.1 Maze6

The maze environments are classical lcs benchmark problems. They are rep-
resented by a two-dimensional grid. Each cell can be occupied by an obstacle,
denoted as attribute value by the character ’O’, a food item, denoted by ’F’, or
can be empty, denoted by ’.’. The animat perceives its immediate surrounding
starting with the cell to the north and coding clockwise. Thus, the perceptual
space in the maze environment Imaze ⊆ {., O, F}L where L = 8, the eight ad-
jacent cells. Figure 1 shows Maze6, one of such standard mazes. For example,
an animat located one position below the food perceives ’FOOO..OO’ whereas
an animat located at the lower left corner perceives ’.O.OOOOO’. The simulated
animat possesses eight primitive actions, the movements to the eight adjacent
cells (i.e. Amaze = {N, NE, E, SE, S, SW, W, NW}). If a movement leads to a
position that is blocked by an obstacle, the action has no effect. Once the food
position is entered, the environment provides a reinforcement of 1000 and one

Fig. 1. Maze6

328 O. Sigaud et al.

trial ends. In that case, the animat is repositioned to a randomly chosen empty
spot in the maze and tries again. Note that, while the state is observed through
attributes or random variables, giving rise to an fmdp representation, Maze6
still obeys the Markov property, that is, the current state perceptions suffice to
uniquely identify the current state of the agent, and the knowledge of that state
and the action suffice to determine the distribution over next states, by contrast
with what would happen in a Partially Observable mdp.

4.2 Blocks World Problem

Our second benchmark is a blocks world scenario introduced in [2]. In this prob-
lem, b blocks are distributed over a certain number of stacks s. The agent can
manipulate the stacks by the means of a gripper that can either grip or re-
lease a block on a certain stack. It perceives the current block distribution
coding each stack with b attributes. One additional attribute indicates if the
gripper is currently holding a block. Thus, the perceivable situations are a
subset of I ⊂ {∗, b}bs+1. Additionally, the problem is defined by a particular
goal state. We define the goal by putting a particular number y of blocks on
the first stack. Figure 2 (right-hand side) shows the goal in the problem with
b = 4, s = 3, y = 3.

Fig. 2. A blocks world scenario, from a random initial position (left-hand side) to the
goal position (right-hand side)

4.3 Experiments

Our experimental protocol is the following. In all runs, we alternate one episode
of pure exploration with a random policy and one episode of pure exploitation
based on the learned policy. Learning is turned off during exploitation runs.
In both benchmark problems, each episode is limited to 50 steps. All results
presented below are averaged over 10 runs.

We compare the performance and size of the models in xacs and spiti. In
xacs, the size of the model corresponds to the number of macro-classifiers, for
the value function as well as for the model of transitions. In spiti, it corresponds
to the number of branches in the value tree and trees representing the model of
transitions.

Anticipatory Learning Classifier Systems and FRL 329

(a) (b)

Fig. 3. (a):Performance in Maze6 (b):Size of the models

(a) (b)

Fig. 4. (a):Performance in Blocks world (b):Size of the models

In the case of Maze6, Figure 3 shows the averaged performance and size of
the models from episode to episode.

In the case of Blocks world, Figure 4 shows the averaged performance and
size of the models in problems with an increasing size, so as to compare the
scaling capabilities of both algorithms. In that case, the performance and size
for each problem is measured after 200 episodes (alternating 100 exploration
episodes and 100 exploitation episodes).

An analysis of Figure 3 shows that, in the case of Maze6, spiti slightly
outperforms xacs while building a much more compact model of transitions
and a model of the value function of similar size after convergence.

By contrast, the analysis of Figure 4 shows that, even if spiti performs com-
parably to xacs for small Blocks world problems, its model size scales much
worse. Thus, xacs can deal with much larger problems than spiti. The explosion
of the size of the model in spiti also resulted in a much slower computation of
the optimal policy.

330 O. Sigaud et al.

5 Discussion

The results show that spiti outperforms xacs on Maze6 and it performs similar
to xacs on small Blocks world problems. This suggests that given their
clearer mathematical background the basic algorithms in spiti are intrinsically
at least as efficient as the combination of heuristics in xacs. However, the fact
that xacs outperforms spiti on larger Blocks world problems and scales
much better on these problems reveals a conceptual problem in spiti that xacs
does not suffer from.

The problem is about the representation of “impossible states”. In the case of
Blocks world with the binary representation we used, many arbitrary combi-
nations of attribute values correspond to states that can be represented by both
formalisms but that do not occur in practice: all states where a block is lying “in
the air” (that is, neither on another block nor on the table) and all states that
denote the presence of more or less than b blocks are impossible. The more empty
cells in the problem, the more such impossible states. In spiti, the model of the
value function ends with representing explicitly a lot of these impossible states.
A closer examination of the algorithms reveals that this undesirable property is
inherited from svi itself, the structured dynamic programming algorithm used
in spiti.

Indeed, in svi the probabilities of transitions over each variables are computed
separately. Thus, the information about the possible or impossible co-occurrences
of values of such variables is lost. In the structured Bellman regression algo-
rithm used in svi, nothing prevents the expression of impossible states in the
value function, although these states do not occur in practice. To our knowledge,
this fact has never been noticed or made explicit in the literature—seeing also
that the benchmark problems used to present structured dynamic programming
algorithms are free of such impossible states.

By contrast, xacs benefits from several generalization biases that restrain a
possible tendency to represent such impossible states:

– the classifier population is limited in size, resulting in a compactness pressure;
– the covering operator favors the creation of classifier that correspond to

actually encountered states rather than impossible ones;
– the genetic-based generalization assures coverage of sufficiently frequently

sampled states but also enforces the deletion of rules that cover unsampled
subspaces.

In this way, xacs tends to cover the encountered subspace manifold of the full
representational space as compactly as possible based on several occurrence and
validity signals that are received by means of (random) problem space sampling.

Moreover, due to its interactive specialization and generalization mechanism,
xacs identifies the action-dependent state transitions with maximally compact
representations. While the specialization mechanism includes seemingly rele-
vant state attributes heuristically, the genetic generalization mechanism deletes
over-specializations. While researches might hesitate to utilize the evolutionary-
inspired mechanisms used in xacs, comparisons to statistical approaches show

Anticipatory Learning Classifier Systems and FRL 331

similar functionality and scalability [28,29,30]. Thus, drawing inspiration from
xacs suggests to include state occurrence estimates and state relevance esti-
mates, where the latter are based on prediction accuracy estimates, in order to
approximate the fmdp model more compactly and efficiently while still suffi-
ciently accurately.

Nevertheless, one must not forget that the model of transitions built by xacs
differs from the model in spiti since xacs calls upon the“=”symbol and predicts
several attributes simultaneously whereas macs uses the “?” symbol and antici-
pates one attribute at a time, like spiti. In that respect, on the one hand, a more
straightforward spiti and an alcs should be the comparison of spiti with an
ideal combination of xacs and macs– which does not exist so far. On the other
hand, trying to figure out whether it is possible to anticipate several attributes
at a time within the frl framework might result in interesting insights.

6 Conclusion

The goal of this contribution was to show that, although alcss and frl systems
such as spiti are conceptually very similar and share interesting properties, they
also show some important differences that have major consequences on their algo-
rithmic properties and their performance. By means of an empirical comparison,
we have discovered that the structured dynamic programming algorithm, which
lies at the heart of one of the main frl systems, spiti, suffers from a concep-
tual problem that prevents it from scaling as efficiently as xacs does—the most
efficient alcs currently available. Future work will need to fix this conceptual
problem possibly drawing inspiration from the mechanisms employed in xacs as
discussed above.

References

1. Butz, M.V., Sigaud, O., Gérard, P.: Anticipatory behavior: Exploiting knowledge
about the future to improve current behavior. In: Butz, M.V., Sigaud, O., Gérard,
P. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS, vol. 2684,
pp. 1–10. Springer, Heidelberg (2003)

2. Butz, M.V.: Anticipatory Learning Classifier Systems. Kluwer Academic Publish-
ers, Boston (2002)

3. Sutton, R.S.: Planning by incremental dynamic programming. In: Proceedings of
the Eighth International Conference on Machine Learning, pp. 353–357. Morgan
Kaufmann, San Mateo (1990)

4. Gérard, P., Sigaud, O.: Designing efficient exploration with MACS: Modules and
function approximation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R.,
O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener,
J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller,
J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1882–1893. Springer,
Heidelberg (2003)

5. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy con-
struction. In: Proceedings of the 14th International Joint Conference in Artificial
Intelligence, pp. 1104–1111 (1995)

332 O. Sigaud et al.

6. Degris, T., Sigaud, O., Wuillemin, P.H.: Chi-square tests driven method for learning
the structure of factored MDPs. In: Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence, Massachusetts Institute of Technology, Cambridge,
pp. 122–129. AUAI Press (2006)

7. Degris, T., Sigaud, O., Wuillemin, P.H.: Learning the structure of factored markov
decision processes in reinforcement learning problems. In: Proceedings of the 23rd
International Conference in Machine Learning, pp. 257–264. ACM, Pittsburgh
(2006)

8. Sigaud, O., Wilson, S.W.: Learning Classifier Systems: a survey. Journal of Soft
Computing 11(11), 1065–1078 (2007)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence. University
of Michigan Press, Ann Arbor (1975)

10. Wilson, S.W.: ZCS, a Zeroth level Classifier System. Evolutionary Computa-
tion 2(1), 1–18 (1994)

11. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

12. Riolo, R.L.: Lookahead planning and latent learning in a Classifier System. In:
Meyer, J.A., Wilson, S.W. (eds.) From animals to animats: Proceedings of the First
International Conference on Simulation of Adaptative Behavior, pp. 316–326. MIT
Press, Cambridge (1991)

13. Holland, J.H., Reitman, J.S.: Cognitive Systems based on Adaptive Algorithms.
Pattern Directed Inference Systems 7(2), 125–149 (1978)

14. Stolzmann, W.: Anticipatory Classifier Systems. In: Koza, J., Banzhaf, W., Chel-
lapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba,
H., Riolo, R. (eds.) Proceedings of the 1998 Genetic and Evolutionary Computa-
tion Conference, pp. 658–664. Morgan Kaufmann Publishers, Inc., San Francisco
(1998)

15. Butz, M.V., Goldberg, D.E., Stolzmann, W.: Introducing a genetic generaliza-
tion pressure to the Anticipatory Classifier Systems part I: Theoretical approach.
In: Proceedings of the 2000 Genetic and Evolutionary Computation Conference
(GECCO 2000), pp. 34–41 (2000)

16. Hoffmann, J.: Vorhersage und Erkenntnis [Anticipation and Cognition]. Hogrefe,
Göttingen (1993)

17. Butz, M.V.: An Algorithmic Description of ACS2. In: Lanzi, P.L., Stolzmann,
W., Wilson, S.W. (eds.) IWLCS 2001. LNCS, vol. 2321, pp. 211–229. Springer,
Heidelberg (2002)

18. Butz, M.V., Goldberg, D.E., Stolzmann, W.: The Anticipatory Classifier System
and Genetic Generalization. Natural Computing 1(4), 427–467 (2002)

19. Butz, M.V., Goldberg, D.E.: Generalized state values in an anticipatory Learn-
ing Classifier System. In: Butz, M.V., Sigaud, O., Gérard, P. (eds.) Anticipatory
Behavior in Adaptive Learning Systems. LNCS (LNAI), vol. 2684, pp. 282–301.
Springer, Heidelberg (2003)

20. Gérard, P., Stolzmann, W., Sigaud, O.: YACS: a new Learning Classifier System
with Anticipation. Journal of Soft Computing: Special Issue on Learning Classifier
Systems 6(3-4), 216–228 (2002)

21. Gérard, P., Meyer, J.A., Sigaud, O.: Combining latent learning with dynamic
programming in MACS. European Journal of Operational Research 160, 614–637
(2005)

22. Dean, T., Kanazawa, K.: A Model for Reasoning about Persistence and Causation.
Computational Intelligence 5, 142–150 (1989)

Anticipatory Learning Classifier Systems and FRL 333

23. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic dynamic programming with
factored representations. Artificial Intelligence 121(1-2), 10–49 (2000)

24. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic Planning using
Decision Diagrams. In: Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pp. 279–288. Morgan Kaufmann, San Francisco (1999)

25. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4, 161–186
(1989)

26. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. Springer, Heidelberg (2006)

27. Butz, M., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a theory of generalization
and learning in XCS. IEEE Transactions on Evolutionary Computation 8(1), 28–46
(2004)

28. Butz, M.V., Lanzi, P.L., Wilson, S.W.: Function approximation with XCS: Hyper-
ellipsoidal conditions, recursive least squares, and compaction. IEEE Transactions
on Evolutionary Computation 12, 355–376 (2008)

29. Potts, D.: Incremental learning of linear model trees. In: Proceedings of the Twenty-
First International Conference on Machine Learning (ICML 2004), pp. 663–670
(2004)

30. Schaal, S., Atkeson, C.G.: Constructive incremental learning from only local infor-
mation. Neural Computation 10, 2047–2084 (1998)

	Anticipatory Learning Classifier Systems and Factored Reinforcement Learning
	Introduction
	Background
	Learning Classifier Systems
	Anticipatory Learning Classifier Systems
	Factored Markov Decision Processes
	Factored Reinforcement Learning and spiti

	Systems and Comparisons
	Comparing SPITI with MACS
	Presentation of XACS

	Experimental Study
	Maze6
	Blocks World Problem
	Experiments

	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

