
Transfer of Knowledge for a Climbing Virtual Human:
a Reinforcement Learning Approach

Benoît Libeau, Alain Micaelli and Olivier Sigaud

Abstract— In the reinforcement learning literature, transfer
is the capability to reuse on a new problem what has been
learnt from previous experiences on similar problems. Adapting
transfer properties for robotics is a useful challenge because it
can reduce the time spent in the first exploration phase on a
new problem. In this paper we present a transfer framework
adapted to the case of a climbing Virtual Human (VH). We
show that our VH learns faster to climb a wall after having
learnt on a different previous wall.

I. INTRODUCTION

Complex mechanical systems such as humanoid robots
or Virtual Humans (VHs) raise so many control challenges
that the robotics practitioners cannot hope to program all the
aspects of their control by hand. As a result, a paradigmatic
shift towards new control approaches is necessary.

Among these new approaches, learning is central. A lot
of effort is spent on imitation learning [1], on supervised
learning of robot models for control [2], [3] and on Re-
inforcement Learning (RL) [4]. In the case of RL, many
technical developments are of interest for robotics research.
Among them, transfer is the capability to reuse on a new
problem what has been learnt from experience on a previous
problem. Transfer capabilities are important in the context
of robotics applications because the initial exploration phase
of the standard RL process is either very expensive or
even impractical with a robot. A solution could then be
to perform training in a simplified or simulated context
and then transferring the corresponding knowledge to the
actual robotics context before a final tuning phase, instead
of learning from scratch with the robot.

More generally, the central challenges of using RL tech-
niques in a robotics context come from the fact that these
techniques are generally designed in the context of small and
discrete problems whereas most control problems are large
and continuous. Thus one has to adapt RL techniques to large
and continuous control problems.

In this paper, we will present a case study where we
adapt a RL transfer framework to the case of a complex
VH learning to climb successive walls. In this context, the
transfer challenge we address is the following: we want our
VH to learn to climb efficiently on a first wall so that, when

Benoît Libeau and Alain Micaelli are with Laboratoire
d’Intégration des Systèmes et des Technologies in Commissariat
à l’Énergie Atomique, 18 route du Panorama, BP6, Fontenay
Aux Roses, F92265, France benoit.libeau@ensta.org,
alain.micaelli@cea.fr

O. Sigaud is with Institut des Systèmes Intelligents et de Robotique, Uni-
versité Pierre et Marie Curie - Paris 6, CNRS UMR 7222, 4 place Jussieu,
F75252 Paris Cedex 05, France olivier.sigaud@upmc.fr

confronted afterwards with different walls, it can reuse what
it has learnt and learn faster to climb them efficiently. We
will focus on the design of a problem representation that
results in such transfer properties.

Our paper is organized as follows. After a short presenta-
tion of transfer in RL, we describe our case study, explaining
how we adapt our VH simulation to the RL and transfer
framework. We present our experimental results and discuss
the transfer capabilities of our agent, as well as the realism
of our working hypotheses.

Fig. 1. Views of our 32 degrees of freedom virtual human and of the holds

II. BACKGROUND

A. Transfer in Reinforcement Learning

Reinforcement Learning [5] is a framework where an
agent acquires knowledge of a Markov Decision Process
(MDP) through trial and errors. In Q-learning [6], the learnt
value function is stored for all state-action pairs in the so-
called Q-table. In Dyna-Q [7], the algorithm we actually use,
the convergence of the value function is sped up by the use
of a learnt model of the environment.

The efficiency of the RL process depends much on the rep-
resentation of the states and actions, that defines for example
the combinatorial size of the problem. Some representations
of the states and actions can have good generalisation prop-
erties, so one can reuse the knowledge acquired by solving



one MDP, when facing another similar but different problem.
This is known as transfer.

Konidaris proposed in [8] a framework for transfer in
RL. He considers a sequence of task instances generated
by an underlying parametrized environment model. In our
case, the task instances will be different climbing walls. All
the instances have their own state and action spaces, their
own transition and reward functions (this specific information
form the problem-space of the instance) but they have enough
similarity (they share an agent-space) so that it is possible for
an agent to use the knowledge acquired during one instance
to solve another one.

In operational examples of transfer [9], [10], agent-spaces
contain “perceptions” of the states and actions by the agent.
These perceptions are subjective to the agent, so they do not
depend on the problem instance the agent faces. Perceptions
are descriptors of visited states and actions in the agent-
space, but they can also be seen as standard states or actions
and can be used in a regular RL process. Our goal is to
learn such a portable value function that takes its input in
an agent-space and can be used on different instances.

III. MATERIAL AND METHODS

A. Simulation Framework

Our agent is a VH: a tree of physics-simulated bodies [11]
that can model a human or a humanoid robot. Our VH has
32 degrees of freedom, it is 1.70m high and the size of the
bodies, as well as the nature and limits of the articular links
between these bodies, are taken from anthropometric tables
[12], [13].

Previous works on climbing robots often used dedicated
grasping effectors [14], [15] and considered climbing as a
problem of gait [16]. Bretl [17], [18] also addressed the tech-
nological challenge of physical robots but, using a wall with
non-evenly-placed holds, introduced the problem of climbing
as a planning problem similar to the one we address. Works
on VH include several studies of sport movements [19], [20],
but to our knowledge no specific work on wall-climbing.

The root body of the VH seen as a tree of bodies is the
torso. We note e0 ∈ IR3 the position of this body in the scene
referential (for simplicity, we do not consider the orientations
of the bodies). The articular configuration space of the VH is
described by G = [e0, q] ∈ IR35 where q ∈ IR32 is the vector
of its articular coordinates. Inside the configuration space, the
reachable space R is the set of postures that comply with
our VH constraints.

The problem we want to solve is planning like a human
climber would do before starting on a new wall, with only
a model of holds positions on the wall and a geometrical
model of the VH. The environment consists of the climbing
wall. Actually, we only model holds, that are small regions of
space (spheres with a 4cm radius) that the VH can “grasp”.
The VH has “grasping spheres” at the end of its terminal
effectors (hands and feet) and we say it grasps a hold when
the grasping sphere intersects the hold sphere.

We generate random climbing walls in the following
process. First, we create a grid of 4 (horizontally) by 8

(vertically) rectangular tiles with dimensions 0.3m × 0.5m.
The holds are placed on the vertices of the tiles. Then, we
translate each hold with a random vector in IR2 generated
according to a centered normal law with standard deviation
σ = 0.08. The referential of the scene is defined as follows:
all holds are in one plane defining the x-axis. The y-axis
goes horizontally to the left. The z-axis goes vertically to
the top of the wall.

Our operational space is defined by the positions of the
grasping spheres and the root body1. It is described by E =
(e0, e1, e2, e3, e4) ∈ IR15 where each ei, for 1 ≤ i ≤ 4 is a
vector of the physical space IR3, which gives the position of
the end effector i in the referential of the scene.

As a high-level description of operational space, we call a
4 holds configuration (or 4-configuration) a mapping of the
four effectors to distinct holds on the wall. It can be repre-
sented by a quadruple containing an identifying number for
each hold. If Eholds is the set of all holds, a 4-configuration is
C4 = (h0, h1, h2, h3) where each hi ∈ Eholds is the number
of the hold grasped by the end effector number i.

We say that a hold configuration is C-reachable (to prevent
confusion with other notions of reachability) if there exists
a posture in R where the four end effectors are grasping the
corresponding holds on the wall. Eventually, we can rephrase
our problem: we want to find a sequence of C-reachable 4-
configurations that will drive the VH to the top of the wall.

We use the rule that the climber should have at least three
contacts to the wall at any time, so it moves one hand or foot
at a time. Following this rule, Bretl’s robots had quasi-static
movements. We simulate only kinematic and no dynamic fea-
tures: the dynamic problem of realising elementary reaching
movements or displacement of the center of mass of the VH
can be studied separately [11].

B. Inverse Kinematics

The point of Inverse Kinematics (IK) is to find an articular
configuration corresponding to a configuration specified in
the operational space. Let edes

i be the position of the target
hold of end effector i. We use a heuristic noted H(C4) to
define the target position of the root body edes

0 . On the y-
axis, the target is in the middle of the two feet holds. On the
z-axis, the target is above the lowest foot hold translated by
the height of the root body in a natural standing position.

Our IK algorithm builds a path from an initial articular
configuration to another (previously unknown) articular con-
figuration by descending the gradient of a cost function f
that penalizes the distance between current and desired end
effectors positions: f(E) =

∑4
i=0

1
2‖ei − edes

i ‖2. Consider-
ing the cost function as a function of the configuration space
(f̂ : G 7→ f̂(G) = f(E)), at each iteration of the gradient
descent algorithm (see Algo. 1.) the current point is displaced
in the direction opposed to the gradient and characterized by
a step α (line 8,9). However the direction of the descent is

1If we do not include the root body in the operational space, the random
exploration in RL can lead the robot to unnatural postures (e.g. robot’s back
facing the wall), thus declaring some configurations not reachable when
they obviously are.



modified to comply with the articular limits of the VH: the
step of the descent is set to zero for articulations that would
exceed their maximal extension (line 9).

Algorithm 1: Inverse Kinematics by Gradient Descent

G← Ginit ;1

compute current (e0, e1, e2, e3, e4) ;2

t← 1;3

s← termination test (e0, e1, e2, e3, e4, t);4

while s do5

t← t+ 1;6

V ← Compute gradient of f̂ in current point;7

δG← −αV ;8

G← G+ modify descent direction (δG);9

compute current (e0, e1, e2, e3, e4);10

s← termination test (e0, e1, e2, e3, e4, t);11

if t > ∆t then return Ginit else return G ;12

In order to determine when the final configuration is
reached, we observe the current ei−edes

i to see if all the hand
spheres intersect the hold spheres (line 4). We also define a
tolerance sphere for the position of the root body. When all
the bodies are in the right areas, the gradient descent stops.
By contrast, when the configuration is not C-reachable, the
computation can continue forever, so we must stop it with
some arbitrary criterion. We assume that all configurations
that are not reached within a certain amount of time ∆t are
not C-reachable. ∆t is fixed to 5.5 seconds of simulated time
after studying the results of a large number of experiments.

Our IK algorithm is implemented by a function Gfinal =
IK(Ginit, C

4, edes
0 ). By keeping in memory all articular

configurations experienced during the run, we can build
a continuous path from Ginit to Gfinal in R, or rather
a discrete sample of points along this path. Formally, an
articular configuration Gt is said G-reachable from Gi if
there is a continuous path going from Gi to Gt in R:

∃P : [0, 1]→ R, continuous / P(0) = Gi and P(1) = Gt

Experiments suggest that, for a big enough value of ∆t, any
articular configuration in R is G-reachable from any other.

Under this hypothesis2, we can build an operational defini-
tion of reachability: a 4-configuration is C-reachable if there
exists an articular configuration that is G-reachable from the
current configuration and that grasps the four holds.

C. Problem-Space Representation

The states of our RL process are 3 holds configurations. A
3-configuration is similar to a 4-configuration but with only
three end effectors grasping a hold, the fourth being the free
hand or foot. A 3-configuration vector is a 4-configuration
vector with one zero element for the free hand or foot. For
example, a 3-configuration with a free right hand is C3 =

2If this hypothesis is wrong, it only means we will miss some solutions of
our problem. We are safe from trying to reach 4-configurations that are not
C-reachable, which would have catastrophic results in a dynamic simulation.

(0, h1, h2, h3), with hi ∈ Eholds. The action we consider is
the number of the hold that the free hand will reach. In state
s = C3, the action a1 tries to reach the 4 holds configuration
C4

1 = (a1, h1, h2, h3).
In order to define the transition and reward functions of

our MDP, let us assume the agent is taking action a1 in state
s. The next 4-configration, if C-reachable, will be the one
determined by the old and new holds: C4

1 in our example.
In order to chose the next state among the 4 different 3-
configurations that correspond to C4

1 , the next free end
effector is determined in a round robin (right hand, left hand,
right foot, left foot, right hand. . . ). The next state in our
example would be C3

1 = (a1, 0, h2, h3). After a successful
transition, the agent receives a small negative reward (Algo.
2, line 19), except if its center of mass has passed the final
height, which means that the episode ends with a positive
reward (line 15). If C4

1 is not C-reachable, the agent will
stay in state s and receive a big negative reward (line 11).

In order to reduce the combinatorial size of the problem,
not every 3- and 4-configurations are considered for the
RL process: the configurations that are not geometrically
meaningful are removed in two cases. First, if the maximum
distance between all pairs of holds in the configuration is
higher than the maximum extension of the VH (we took
2.8m as an upper bound of this value). Secondly, if the
configurations is not “natural”, based on the relative positions
of the holds. We do not consider configurations with both feet
above the hands or with crossed arms or legs. Computation
over 20 random-generated walls show that only 7.3% of the
possible 3-configurations and 1.4% of the 4-configurations
pass the test.

Finally, during the RL process, we must compute the
sequence of postures corresponding to the visited states and
actions. The hold density on our wall is high enough so
there is at least one 4-configuration that is C-reachable from
any given 3-configuration. Thus, there are solutions to our
problem, and the agent will eventually find one.

The sequence (Gi) of the articular configurations taken by
the VH during the RL process, is defined by the following
recurrence relation: Gi+1 = IK(Gi, C

4
i+1, H(C4

i+1)).
We have a cache process that stores all computed reach-

able 4-configuration and the corresponding articular config-
uration, so we only have to run our IK algorithm once per
4-configuration.

D. Agent-Space Representation and Transfer Algorithm

The representation of states and actions we presented in
the previous section is the problem-space of our transfer
experiment. It is sufficient to solve one instance of the
problem but it is specific to this instance and the acquired
knowledge cannot be used on another instance. We now
present the agent-space of our problem, where states and
actions are defined relatively to the agent. The main idea of
this new representation is to project the holds on a “moving
grid”, composed of 35 (5×7) rectangular tiles with size (0.3m
× 0.5m) (see Fig. 2(a)). The number of tiles is chosen to



(a) (b)

Fig. 2. (a) Projection on the grid of the virtual human of Fig. 1 (front
view). Black crosses represent holds. Red circles show the tiles that contain
the end effectors. The green dots are the Pi points that are projected on the
free hands or feet. (b) Projection on the grid of all state-action pairs with
free right hand (top left), free left hand (top right) and free feet (bottom left
and right). For each map, maximal values are in white and minimal values
in black. The green dots are the relevant Pi points.

keep the same combinatorial size as the previous problem
and their size is chosen so that the grid covers R.

The holds are now represented by their positions on the
“grid”, which change with the movements of the VH. In all
other respects, the definition of a state as a vector of three
holds and a free hand, as well as the definition of the action
as the hold to reach remains the same.

In order to build this new representation, we project the
holds on the grid as follows. We consider the four excentered
Pi points (see Fig. 2(a), for example P1 for the right hand
is the top left-hand one) and we project the grid so that the
Pi point lies on the position of the corresponding free hand
or foot, before limb movement. We then simply identify a
hold by the number of the tile where it lies at a given time.
Conversely, when we need to project the grid on the holds
(chose one hold corresponding to a given tile), we take the
hold that is the nearest from the center of the tile.

We could use our new state and action representation in a
classic RL algorithm, but then we would lose the possibility
to use an efficient (i.e. exact, though incomplete) model.
The transition function is more complicated in the grid
representation than in the wall-based one: during a movement
of the VH, the descriptors of the holds under the grasping
hands or feet change, because the free hand and the Pi point
change. Moreover, the size of the tiles implies that a state
may refer to several hold configurations, so we cannot keep
a repertoire of known postures and have to compute a new
articular configuration corresponding to known states when
we meet these states again.

In order to have both the computational efficiency of the

Algorithm 2: Parallel Reinforcement Learning Processes
in Problem-Space and Agent-Space

put VH in initial 4-configuration C4
init: G← Ginit;1

free_hand← 1;2

next state s′ is initial state s← sinit;3

while true do4

s← s′;5

chose action a in s;6

compute new 4-configuration C4;7

Gold ← G;8

G = IK(G,C4, H(C4));9

if G == Gold then10

r ← −1000;11

next state s′ is current state: s′ = s;12

else13

if VH passed final height then14

r ← 200000;15

next state s′ is initial state: s′ ← sinit;16

free_hand← 1;17

else18

r ← −1;19

s′ ← next_state(s, a, free_hand);20

free_hand← free_hand+ 1 mod 4;21

Update(Qwall,s,a,s′,r);22

Update(Qgrid,s,a,s′,r);23

Model(s, a) = (s′, r);24

for i = 1 to 50 do25

chose random action a1 previously taken in s1;26

(s2, r1) = Model(s1, a1);27

Update(Qwall,s1,a1,s2,r1);28

Update(Qgrid,s1,a1,s2,r1);29

wall-based representation and the generalisation properties
through the grid representation, we use both representations
and solve the problem with two parallel RL processes.

We now consider states as couples s = (swall, sgrid)
where swall is the descriptor of the state in problem-space,
and sgrid is its translation on the grid. We use the same
couples for actions. Our agent uses two different Q-tables.
Qwall uses the wall-based representation of states to learn in
the problem-space whereas Qgrid uses the grid representation
to learn the portable action value function. Both Q-tables
are updated according to the standard Q-learning equation
Q(s, a) ← Q(s, a) + α(r + γmaxa′ Q(s′, a′) − Q(s, a)),
with γ = 0.9 and α = 0.1 (Algo. 2, lines 22,23).

The simulated transitions, that must speed up the conver-
gence, are computed with the wall-based problem model and
then are transferred to Qgrid (lines 24-29).

Our action selection algorithm is inspired by the classical
ε-greedy method (see Algo. 3). Most of the time, we want
to use the knowledge of Qwall (lines 2-5) because RL on the
wall-based problem more easily leads to an optimal policy.
We then take the best action in the sense of Qwall and call



Algorithm 3: Action Selection

agent is in state s ;1

a1 ← best possible action in state s for Qwall;2

r1 ← pseudo-random number in [0, 1];3

if r1 > ε and a1 has already been taken in s;4

then chosen actions is a1;5

else6

a′
1 ← best possible action in state s for Qgrid;7

r2 ← pseudo-random number in [0, 1];8

if r2 > ε and a′
1 has already been taken in s;9

then chosen actions is a′
1;10

else11

chose random possible action;12

this choice w-greedy.
When the best action for Qwall has never been taken in the

considered state, we prefer to chose the best action according
to Qgrid. This happens for example when the agent starts on
a new wall after training a previous wall. We call the choice
of the best action (lines 7-10) of Qgrid g-greedy.

When neither of the best actions for Qwall and Qgrid were
tried in the past, we chose a random action. We also want
to take a random action from time to time because only
exploration can ensure us convergence to the optimal policy.
This choice is described as random (line 12).

IV. EXPERIMENTAL RESULTS

We evaluate the transfer capability of our agent by the
following experiment. The VH first learns on a “training”
wall for 8000 iterations. Then it is tested for “transfer” on
another wall for another 8000 iterations, keeping only its
learnt Qgrid because the learnt Qwall cannot be reused. 8000
iteration is far too short to hope we can converge to an
optimal policy: we hardly explore 0.5% of the action-state
pairs. Performing 8000 iterations lasts around 30 hours on
our machine, with an AMD Opteron 64 processor (2.6GHz)
with 4Go of memory. Our simulation environment with our
VH, as well as our inverse kinematics algorithm and our
RL framework are implemented in Matlab. Unless stated
otherwise, the figures presented in this sections are averages
over 6 experiments for training and 6 for transfer.

There are several phases during the learning of the agent
on the training wall, as best seen on Fig. 3, showing the
cumulative number of actions chosen following the three
selection regimes. First, the agent performs a random explo-
ration of the states and actions. After about 1000 iterations,
the agent starts using some knowledge from the grid and
takes some g-greedy actions. Then, gradually, while the
agent explores more and more states, a bigger number of
w-greedy actions are taken. Those w-greedy actions are
really exploitation of the acquired knowledge because their
success rate (defined as the proportion of actions leading to
reachable 4-configurations) is one (see Table I). Fig. 4 shows
that the performance converges to about 30 moves, whereas

the optimal policy always going up would take around 10
actions.

TABLE I
SUCCESS RATE AND VERTICAL DISPLACEMENT OF e0 (cm) FOR SINGLE

SUCCESSFUL ACTION: AVERAGES OVER THE 2,000 FIRST ITERATIONS

(BEGINNING) AND OVER THE WHOLE EXPERIMENTS (OVERALL)

beginning overall
training transfer training transfer

vert. displacement of e0

w-greedy 7.3 12.0 9.4 10.6
g-greedy 0.4 1.8 4.3 3.4
random 2.0 2.0 2.0 2.0
success rate
w-greedy 100% 100% 100% 100%
g-greedy 46% 45% 60% 57%
random 43% 44% 43% 44%

Fig. 3. Regimes of action selection

The knowledge acquired in the agent-space is represented
as the values in Qgrid. High values code for state-action pairs
leading the VH to the top of the wall. To visualize a policy,
we first restrain to the states srh

i with a free right hand. Each
action corresponds to the selection of a tile on the grid. For a
tile on the grid aj , we consider all the states (srh

i ) where this
action is possible and we sum the Qgrid(srh

i , aj) to produce
the value of this action across all states. We then have a map
that shows the tiles corresponding to good free right hand
actions. We can also produce similar maps with the other end
effectors as shown in Fig. 2(b). Tiles in black show actions
that failed or were never performed, mostly because of our
geometrical constraints. The preferred hand actions (tiles in
white) are above the relevant Pi points (starting point of the
limb movement), producing a movement upward.

Eventually, Fig. 4 shows that, during the first exploration
phase, the episodes are significantly shorter in transfer than
in training. As seen on Table I, the g-greedy actions in the
beginning of the transfer experiments, when they mainly rely
on the knowledge acquired during the training session, are
more efficient (in terms of vertical displacement) than during
training. Another way to visualize the transfer capabilities
of the agent is on Fig. 3: the agent reaches the exploitation
phase, when it uses only w-greedy actions, sooner in transfer



Fig. 4. Episode lengths during the experiments: transfer experiments
converge faster

than in training. In the long run, the performance of the agent
in transfer and in training are comparable.

V. DISCUSSION

Konidaris’ framework does not give a unique method
to compute a portable value function. It could be done,
like in [10], by supervised learning from the pairs
((si, ai), Q(si, ai)) obtained after convergence of the action-
value function on the problem state. [9] obtains a policy
by RL on a problem-space, then translates this policy in
an agent-space and then back to another problem-space.
We chose to learn the portable value function online, by
a RL process on the agent-space that is parallel to the RL
process on problem-space. This method ensures that, in the
long run on any instance, our agent is efficient on the wall-
based problem. Our approach with parallel RL processes
also endows our agent with transfer capabilities. The agent
uses knowledge of the agent-space obtained in a previous
problem (contained in Qgrid) to reduce the time spent
in the first exploration phase on a new problem, without
overspecialising, i.e. loss of performance on the long run.
This is a useful result because most classical RL techniques
fail to improve the first exploration phase in a goal-directed
problem. A similar result is obtained in [10] with “shaping”.

Eventually, our case study is a very simplified formulation
of the real-world human climbing problem. But in order
to create dynamic movements, kinetic aspects have to be
computed somehow: we now have a kinematic plan, a
sequence of postures to be reached, that just needs to be
implemented dynamically. Anyways, our approximations and
simplifications enabled us to obtain encouraging results.

The geometrical constraints on the holds configurations
and our heuristic to place the root body of the VH are
inspired by human wall-climber behaviours and they give
rather human-like results. However, some hand actions reach
holds that are below shoulder level. This does not produce
a vertical movement to the top and leads to postures that
would be difficult to maintain in a dynamic context: it takes
less effort for human climbers to hang from holds than to
support their weight with their arms. In order to solve these

problems, one may improve the realism of our results by
considering dynamical aspects and costs based on effort.

VI. CONCLUSIONS
In this paper, we described our use of a transfer framework

in RL. We solved a planning problem for a VH performing
kinematics movements on a climbing wall with two differ-
ent RL representations. A first representation used absolute
positions of the holds and the second one a subjective
representation from the point of view of the agent. We
presented an original RL algorithm that enabled us to use
both action and state representations in parallel, so as to
give transfer capabilities to our agent. We have shown that
our agent can solve efficiently problems in training and
in transfer. In transfer, our RL method reduces the time
spent for the first exploration phase and does not affect the
performance in the long run.

VII. ACKNOWLEDGMENTS
The authors would like to thank Cyrille Collette

(CEA/LIST) for his help in the use of the VH and ENSTA
ParisTech for granting access to their machines.

REFERENCES

[1] Calinon, S., Guenter, F., Billard, A.: Goal-directed imitation in a
humanoid robot. Int. Conf. on Robotics and Automation (2005)

[2] Mitrovic, D., Klanke, S., Vijayakumar, S.: Adaptive optimal control
for redundantly actuated arms. Proc. Tenth Int. Conf. on the Simulation
of Adaptive Behavior (2008)

[3] Nguyen-Tuong, D., Peters, J., Seeger, M., Schoelkopf, B.: Learning
inverse dynamics: a comparison. Proc. of the Euro. Symp. on Artificial
Neural Networks (2007)

[4] Peters, J., Schaal, S.: Reinforcement learning for operational space
control. Int. Conf. on Robotics and Automation (2007)

[5] Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction.
The MIT Press (1998)

[6] Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3-4) (1992)
279–292

[7] Sutton, R.S.: Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. Int. Conf.
on Machine Learning (1990)

[8] Konidaris, G.: A framework for transfer in reinforcement learning.
Int. Conf. on Machine Learning (2006)

[9] Stolle, M., Atkenson, C.: Knowledge transfer using local features.
2007 (Proc. of the IEEE Symp. on Approx. Dyn. Prog. and RL)

[10] Konidaris, G., Barto, A.: Autonomous shaping: Knowledge transfer
in reinforcement learning. ICML (2006)

[11] Collette, C., Micaelli, A., Andriot, C., Lemerle, P.: Dynamic balance
control of humanoids for multiple grasp and non coplanar frictional
contacts. Int. Symp. on Visual Computing (2007) 734–744

[12] Dempster, W., Gaughran, G.: Properties of body segments based on
size and weight. American Journal of Anatomy (120) (1967) 33–45

[13] Hanavan, E.: Mathematical model of the human body. Wright-Paterson
Air Force Base (1964)

[14] Sitti, M., Fearing, R.: Synthetic gecko foot-hair micro/nano-structures
for future wall-climbing robots. ICRA (2003)

[15] Yano, T., Numao, S., Kitamura, Y.: Developpment of a self-contained
wall climbing robot with scanning type suction cups. Intl. Conf. on
Intelligent Robots and Systems (1998)

[16] Nagabuko, A., Hirose, S.: Walking and running of the quadruped wall-
climbing robot. IEEE Int. Conf. on Rob. and Aut. 2 (1994) 1005–1012

[17] Bretl, T., Rock, S., Latombe, J.C., Kennedy, B., Aghazarian, H.: Free-
climbing with a multi-use robot. Int. Symp. Exp. Rob. (2004)

[18] Bretl, T., Lall, S., Latombe, J.C., Rock, S.: Multi-step motion planning
for free-climbing robots. WAFR (2004)

[19] Liu, C., Popovic, Z.: Synthesis of complex dynamic character motion
from simple animation. ACM Transactions on Graphics (2002)

[20] Treuille, A., Lee, Y., Popovic, Z.: Near-optimal character animation
with continuous control. ACM Transactions on Graphics (2007)


