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Abstract Emotional speech characterization is an

important issue for the understanding of interaction. This

article discusses the time-scale analysis problem in feature

extraction for emotional speech processing. We describe a

computational framework for combining segmental and

supra-segmental features for emotional speech detection.

The statistical fusion is based on the estimation of local

a posteriori class probabilities and the overall decision

employs weighting factors directly related to the duration

of the individual speech segments. This strategy is applied

to a real-world application: detection of Italian motherese

in authentic and longitudinal parent–infant interaction at

home. The results suggest that short- and long-term infor-

mation, respectively, represented by the short-term spec-

trum and the prosody parameters (fundamental frequency

and energy) provide a robust and efficient time-scale

analysis. A similar fusion methodology is also investigated

by the use of a phonetic-specific characterization process.

This strategy is motivated by the fact that there are varia-

tions across emotional states at the phoneme level. A time-

scale based on both vowels and consonants is proposed and

it provides a relevant and discriminant feature space for

acted emotion recognition. The experimental results on two

different databases Berlin (German) and Aholab (Basque)

show that the best performance are obtained by our pho-

neme-dependent approach. These findings demonstrate the

relevance of taking into account phoneme dependency

(vowels/consonants) for emotional speech characterization.

Keywords Emotional speech � Time-scales analysis �
Feature extraction � Statistical fusion �
Data-driven approach

Introduction

In the past few years, many attempts have been made to

exploit computational models for human interaction anal-

ysis. This interaction can be directed towards other Human

partners but also to machines (computers, virtual agents, or

robots). Computational models aim to characterize signals

emitted by human beings during interaction. Various

frameworks are currently being used to analyze and to

understand the interaction. One of them comes from cog-

nitive psychology and focuses on emotion [1]. The key idea

of this concept, also termed as affective computing, is that

people perceive other’s emotions through stereotyped sig-

nals (facial expressions, prosody, gestures, etc.). Another

framework, coming from linguistic field, aims at under-

standing the meaning of these signals. Indeed, humans

employ different strategies in order to convey the same

message using multi-modal signals such as specific words,

tone of voice, gesture, or more generally body language [2,

3]. Recently, a new framework has been introduced for the

study of interaction termed as Social Signal Processing

(SSP) [4] which focuses on the analysis of social signals by

measuring the amplitude, frequency, and timing of pros-

ody, facial movement, and gesture. SSP is different from

the previously mentioned frameworks in the sense that it

consists of non-linguistic and unconscious signals. More

specifically, SSP aims to predict human behaviors or atti-

tudes (agreement, interest, attention, etc.) by the analysis of

non-verbal signals and it is considered as a separate

channel of communication.
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Most of the frameworks proposed in the literature for the

understanding of interaction are based on the analysis of

verbal and non-verbal signals [1, 3, 5]. The verbal com-

ponent has been extensively investigated by the speech

processing community. Non-verbal signals are expressed in

a different way among the modalities. In [5], five different

non-verbal behavioral cues have been defined: physical

appearance, gestures and postures, face and eyes behaviors,

vocal behavior, and space and environment behaviors. The

combination of different codes make it possible to convey

various information such as emotion, intention but are also

useful for managing interaction, and/or sending relational

messages (dominance, persuasion, embarrassment, etc.).

In this article, we focus on the analysis of a specific class

of non-verbal behaviors which accompanies the verbal

message termed as vocal behaviors in [5]. They allow to

group empty speech pauses (silences), non-verbal vocal-

izations (i.e., filled pauses, laughters, cries, etc.), speaking

styles (i.e., emotion, intention, etc.), and also turn-taking

patterns. Even if these behaviors do not always have lexical

meanings, they play a major role during natural interac-

tions. Many efforts have been taken to extract features with

no clear consensus on the most efficient ones [4, 6].

However, the prosody channel, characterized by the fun-

damental frequency (f0), the energy and the duration of

sounds, has various functions in human communication

since it serves to convey linguistic information, but also

para-linguistic (e.g., speakers state), and non-linguistic

information (e.g., age) [7, 8].

The remainder of this article presents various strategies

for the fusion of time-scale features in order to study

interactions. Section ‘‘Units for Emotional Speech Char-

acterization’’ reports previous works in the literature

associated with time-scale with a focus on unit selection

problem for emotion recognition. Section ‘‘Combining

Frame-Level and Segment-Based Approach for Intention

Recognition in Infant-Directed Speech’’ describes the sta-

tistical framework for the fusion of frame and segment

level features for infant-directed speech discrimination.

Section ‘‘Data-Driven Approach for Time-Scale Feature

Extraction’’ highlights the relevance of the pseudo-pho-

netic strategy for emotion recognition and provides results

and discussion for time-scale analysis.

Units for Emotional Speech Characterization

The characterization scheme can be divided in two main

steps: feature extraction and pattern classification. Regard-

ing the first step, most methods are based on statistical

measures of pitch, energy, and duration [6]. These statistical

features (e.g., mean, range, max, min, etc.) have also been

found to be related to human perception of emotions [9–11].

These features are usually termed as supra-segmental in

contrast to segmental features (short-term) such as the Mel

Frequency Cepstral Coefficients (MFCC) intensively used in

speech processing. The classification step employs tradi-

tional machine learning and pattern recognition techniques

such as distance based (nearest neighbor k-nn), decision

trees, Gaussian Mixture Models (GMM), Support Vector

Machines (SVM), and fusion of different methods [12].

One particular aspect of the speech emotion recognition

process is the use of both static features (statistics) and

static classifiers (e.g., k-nn or SVM). Indeed, the standard

unit is the speaker turn level [12–14] which consists in the

characterization of a whole sentence by a large number of

features. This approach assumes that the emotional state is

not changing during the speaker turn level. Even if the turn

level approach has proven its efficiency, other units have

been investigated for the exploitation of dynamical aspects

of emotion. The methods can be divided into two groups:

machine learning and data-driven methods.

Machine Learning Based Units

This approach employs machine learning techniques such as

Hidden Markov Models [13]. Speech and speaker recognition

techniques: short-term features and statistical modeling

(GMM, HMM) have been successfully combined with a

traditional turn based level approach [15]. In [16], a time-

scale is identified by a the extraction of short-term feature

extraction (25 ms windows, MFCC) and the use of statistical

modeling (HMM). The time-scale is called by the authors

chunk level. Once the HMM are trained (one for each emotion

class), a Viterbi segmentation is applied resulting in specific

sub-turn units that depend on emotion changes. Tested on

emotion recognition tasks, the chunk level approach outper-

forms syllable based segmentation. This was mainly due to

the fact that the proposed approach produces longer segments

than the syllable segmentation method.

Data-Driven Units

The second approach aims at exploiting various knowledge

about speech signals for the definition of units. For

instance, voiced segments are known to convey more rel-

evant information about emotion and focusing on these

segments has been proven to be efficient [1, 12]. Various

methods have been investigated for combining different

levels [12, 14–17]. In [12], the Segment Based Approach

(SBA) proposes to divide the whole utterance (turn level)

on N voiced segments and then to characterize each voiced

segments. The utterance based approach consists of the

computation of statistical features (F0, energy, spectral

shape) on the whole utterance while the SBA aims at

describing more precisely each voiced segment. From this
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local description an estimation of a posteriori class prob-

abilities is done and the whole decision consists in merging

the probabilities.

The SBA technique has been applied to emotion rec-

ognition for different well-known corpora and it outper-

forms the traditional utterance based feature extraction

technique with k-nn classifiers (best classifier for these

databases [12]): BabyEars 61.5% vs. 68.7% (SBA), Kismet

82.2% vs. 86.6% (SBA). However, with the same frame-

work, different corpora (Berlin and Danish), and various

classifiers (k-nn, SVM) different results have been

achieved. For the Berlin corpus, SBA provides similar

performance for both k-nn and SVM but it is outperformed

by the traditional utterance level approach: k-nn 67.7% vs.

59.0% (SBA), SVM 75.5% vs. 65.5% (SBA). Once again

the performance is correlated with the length of the utter-

ance: SBA provides better results for short sentences

(BabyEars, Kismet) while the turn level is more suited for

longer ones (Berlin). Additionally, it should be noted that

the performance also depends on the employed classifier as

it has been found for the Danish corpus for instance: k-nn

49.7% vs. 55.6% (SBA), SVM 63.5% vs. 56.8%.

Data-Fusion Approach

The above experiments highlight the need of investigations

into sub-units for emotional speech processing. In this

article, we propose to address this problem by data-fusion

of features extracted from different time-scales. The

investigations are carried out in two phases:

– no assumption on the sub-unit (see. ‘‘Combining frame-

level and segment-based Approach for Intention Recog-

nition in infant-directed Speech’’) Section : the idea is to

exploit speaker recognition techniques which are mainly

based on frame-level modeling (all the frames are

exploited for the characterization) as it is done in [16, 18].

– data-driven approach (see ‘‘Data-Driven Approach for

Time-Scale Feature Extraction’’) : speech signals are

characterized by prominent segments such as vowels

which are then employed as sub-units.

The next sections present the two phases applied to

different applications: motherese detection and traditional

emotion recognition tasks.

Combining Frame-Level and Segment-Based Approach

for Intention Recognition in Infant-Directed Speech

Expanded Intonation Contours

Communication of intentions is one of the major functions

of interaction that uses both linguistic (syntax, semantic)

and para-linguistic (prosody) elements. In the literature,

communication of intentions with infants has received

substantial attention [19, 20]. The main reason is that

infants are not yet linguistically competent and the com-

munication of intentions is done by prosody. More spe-

cifically, the communication is done by the parents by a

specific register termed as infant-directed speech or

motherese [21–23].

From an acoustic point of view, motherese has a clear

signature (high pitch, exaggerated intonation contours).

The phonemes, and especially the vowels, are more clearly

articulated. Motherese has been shown to be preferred by

infants over adult-directed speech and might assist infants

in learning speech sounds. The exaggerated patterns

facilitate the discrimination between the phonemes or

sounds. Similarly to what happens with infants, several

works have investigated modifications of speech registers

when talking to animals [24], foreigners [20], or robots

[25–27]. The important conclusion from this literature is

the existence of common prosodic characteristics usually

termed as expanded intonation contours (or Fernald’s

prototypical contours) [19, 22] due to their exaggerated

contours: modulations of the fundamental frequency (F0)

(mean, range).

Investigations on the characterization of these expanded

contours have identified five categories [19]: rising, falling,

flat, bell-shaped, and complex contours of the F0. These

categories are used for the communication of intents such

as attention, prohibition, approval, or comfort. For

instance, rising contours aim at eliciting attention and

encouraging a response while bell-shaped contours aim at

maintaining attention. Consequently, adults convey inten-

tional messages to infants by the use of these expanded

contours. Among the most characterized speaker’s inten-

tions, one can cite: approval, attention, and prohibition.

The classification of intention from speech signals offers an

interesting application to the time-scale problem. Two

approaches can be investigated: the use of only prosodic

description of expanded intonation contours (voiced seg-

ments) or to also extract frame-level segments.

Motherese Detection

In order to study these intentional messages and more

specifically the influence on engagement in an ecological

environment, we followed a method usually employed for

the study of infant development: home movies analysis.

For more than 30 years, interest has been growing about

family home movie of autistic infants. Typically develop-

ing infants gaze at people, turn toward voices and express

interest in communication and especially to infant-directed

speech. In contrast, infants who become autistic are char-

acterized by the presence of abnormalities in reciprocal
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social interactions and in patterns of communications [28].

Recently, researchers in autism pathology and researchers

in early social interactions highlighted the importance of

infant-directed speech for infants who will become autistic

[29, 30]. First manual investigations [31] have shown a

positive impact on the interaction and specially on the

engagement: a response (vocalization, facial expression,

gesture, etc.) by the infant to the production of infant-

directed speech by the parents.

The study of home movies is very important for future

research, but the use of this kind of database makes the

study very difficult and long. The manual annotation of

these films is very costly in time and including automatic

detection of relevant events will be of great benefit to the

longitudinal study. For the analysis of the role of infant-

directed speech during interaction, we developed an auto-

matic motherese detection system [30, 32]. The speech

corpus used in these experiments is a collection of natural

and spontaneous interactions usually used for child devel-

opment research (home movies). The corpus consists of

recordings in Italian of some mothers and fathers as they

addressed their infants. The recordings are not carried out

by professionals resulting in adverse conditions (noise,

camera, microphones, etc.). We focus on one home video

totaling 3 h of data describing the first year of an infant.

Verbal interactions of the mother have been carefully

annotated by two psycholinguists on two categories

(j = 0.69) : motherese and normal directed speech. From

this manual annotation, we extracted 100 utterances for

each class. The utterances are typically between 0.5 s and

4 s in length. For all the experiments in this paper a 10-fold

cross-validation method is employed.

System Description

As a starting-point, and following the definition of moth-

erese [21], we characterized the verbal interactions by the

extraction of supra-segmental features (prosody). To

evaluate the impact of frame-level feature extraction, seg-

mental features are also employed. Consequently, the

utterances are characterized by both segmental (short-time

spectrum) and supra-segmental (statistics of fundamental

frequency, energy) features. These features aim at repre-

senting the verbal information for the next classification

stage based on machine learning techniques. Figure 1

shows a schematic overview of the final system [30, 32]

which is described in more detail in the following

paragraphs.

Supra-Segmental Characterization

The supra-segmental characterization follows the Segment

Based Approach (see ‘‘Units for Emotional Speech

Characterization’’). Previous works on SBA [12] have

shown to be more suited for short sentences as is usually

the case in our corpus. The features consist of statistical

measures (mean, variance and range) of both the funda-

mental frequency (F0) and the short-time energy estimated

from voiced segments. An utterance Ux is segmented into

N voiced segments (Fxi) obtained by F0 extraction. Local

estimation of a posteriori probabilities is carried out for

each segment. The utterance classification combines the N

local estimations:

PðCmjUxÞ ¼
XN

xi¼1

PðCmjFxiÞ � lengthðFxiÞ ð1Þ

where Cm represents the class membership.

The duration of the segments is introduced as weights of

a posteriori probabilities: importance of the measured

voiced segment (length(Fxi)) with respect to the length of

the utterance. The estimation has been carried out for

various classifiers in [30, 32] and GMMs have been found

to give good performance (number of parameters versus

performance).

Segmental Characterization

For the computation of segmental features, a 20 ms win-

dow is used, and the overlapping between adjacent frames

is 1/2. Mel Frequency Cepstrum Coefficients (MFCC) of

order 16 were computed. We exploit traditional speaker

recognition techniques [33]. For the whole utterance Ux,

a posteriori probabilities are estimated resulting in the

estimation of Pseg(Cm|Ux). The estimation can be carried

out for different time-scales: voiced, unvoiced, and whole-

sentence.

To evaluate the system performance we used the

receiver operating characteristic (ROC) methodology [34].

A ROC curve represents the tradeoff between the true

positives (TPR = true positive rate) and false positives

(FPR = false positive rate) as the classifier output threshold

value is varied. A quantitative measure, the area under

ROC curve (AUC), is computed and it represents the

overall performance of the classifier over the entire range

of thresholds. The results for different time-scales are

presented in Table 1. As can be expected voiced segments

provide better results than unvoiced ones. However, the

Segmental Feature 
Extraction

Supra-Segmental 
feature extraction

Signal

Classifier

Classifier

Fusion

Fig. 1 Motherese classification system: fusion of features extracted

from different time-scales
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best results are obtained by using the whole-sentence as is

usually done in speaker recognition showing that authentic

emotional speech recognition is still an open issue com-

pared to acted speech.

Fusion of Time-Scales

The segmental and supra-segmental characterizations pro-

vide different temporal information and a combination of

them should improve the accuracy of the detector. Many

decision techniques can be employed [35, 36] but we

investigated a simple weighted sum of likelihoods from the

different classifiers:

Cl ¼ k � log PsegðCmjUxÞ
� �

þ ð1� kÞ � log PsupraðCmjUxÞ
� �

ð2Þ

with l = 1 (motherese) or 2 (normal directed speech). k
denotes the weighting coefficient.

For the GMM classifier, the likelihoods can be easily

computed from a posteriori probabilities (Pseg(Cm|Ux),

Psupra(Cm|Ux))[37]. The weighting factor k is automatically

optimized in order to obtain the best results on the training

part of the database. Since we employed a 10-fold cross-

validation methodology, we present the means of the

weighting factors.

Figure 2 presents the obtained ROC curves for seg-

mental and supra-segmental features and the best combi-

nation (k = 0.6). The weighting factor reveals a balance

between the two different time-scales.

The above experiment results clearly show that even if

motherese is defined as the modulation of supra-segmental

features, using this basic definition does not produce effi-

cient results (supra-segmental models). Real-world appli-

cations, such as analysis of home movies with authentic

interactions and with a noisy environment, require the

combination of the initial definition (supra-segmental fea-

tures) with short-term features such as the MFCC as details

of the short-term spectrum. Once again, for an efficient

characterization, one should employ several features from

different time-scales.

In this section we used short- and long-term features

extracted from the short-term spectrum (MFCC) and from

the evolution of supra-segmental features (statistics of F0,

energy). By definition, the last set of features are extracted

only from the voiced segments. Consequently all the

voiced segments are processed identically even if very

well-known distinctions exist between them (e.g., vowels

versus consonants).

Data-Driven Approach for Time-Scale Feature

Extraction

Nature of the Segments

The last section showed the relevance of combining frame

and turn level approaches for emotional speech processing.

One of the main limitations of this method relies on the fact

that no sub-units are clearly identified: all the frames are

exploited as it is usually done in speech and speaker rec-

ognition tasks. In this section, we propose to extract the

frame levels on specific units defined here by taking into

account the nature of the segments: vowel or consonant.

Several investigations have been carried out on the relation

of the nature of phonemes and emotional/affective states

[17, 38–41]. All these works highlight the dependency

between emotional states and the produced phonemes. In

addition, vowel sounds seem to convey more emotional

information than voiced consonant sounds [40]. These

results motivate the need of different time-scale analysis

for emotional speech processing.

We recently proposed a new feature extraction scheme

aiming at exploiting the nature of phonemes [41]. The

approach, described in Fig. 3, uses a first segmentation

phase by the help of the Divergence Forward Backward

(DFB) algorithm [42]. The resulting stationary segments

are then classified as vowels by a criterion based on a

spectral structure measure. This process is language inde-

pendent and does not aim at the exact identification of

Table 1 Infant-directed speech discrimination performance of dif-

ferent time-scales for segmental features

Time-scale Area under the ROC

Voiced 0.78

Unvoiced 0.55

Whole sentence 0.93

Fig. 2 ROC curve for segmental and supra-segmental systems
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phonemes as this could be done by a phonetic alignment.

As a result, the obtained segments are termed as pseudo-

phonetic units. This method has been introduced for

automatic language identification [43] and consists in

characterizing pseudo-syllables which have been defined

by gathering the consonants preceding the detected vowels

(CnV structure). The study of these pseudo-syllables made

possible the characterization of two main groups of lan-

guage described in the literature: stressed (English, Ger-

man) and syllabic (French and Spanish). We recently

evaluated this segmentation system for both emotional and

non-emotional speech with an average vowel error rate of

23.29% [41].

Corpora

We evaluate a time-scale analysis by using transcripted

emotional databases: Berlin and Aholab. The Berlin corpus

[44] is commonly used for emotion recognition. Ten

utterances (five short and five long) that could be used in

everyday communication have been emotionally colored

by 10 gender equilibrated native German actors, with high

quality recording equipment (anechoic chamber). A total of

535 sentences marked as minimum 60% natural and min-

imum 80% recognizable by 20 listeners in a perception test

have been kept and phonetically labeled in a narrow tran-

scription. The Berlin corpus has a lexicon of 59 phonemes

(24 vowels and 35 consonants). The Aholab corpus [45] is

composed of 702 sentences coming from a set of different

sources: Basque newspapers, texts from several novels and

others. From all these corpora (over 580,000 sentences), a

reduced set of sentences have been extracted keeping the

original frequency of the diphonemes as far as was possi-

ble. Then, a lexical balance has been processed to get the

702 sentences. Concerning the emotions, two gender

equilibrated professional speakers acted out the sentences

in a semi-professional studio. The Aholab corpus has a

lexicon of 35 phonemes (5 vowels and 30 consonants).

Classification With the Vowel–Consonant Time-Scale

The vowel–consonant time-scale is now exploited for

emotion recognition problem by the use of the automatic

pseudo-phonetic characterization (Fig. 3). We followed a

segment-based approach (SBA) (equation 1) similar to what

has been done for infant-directed speech discrimination (see

‘‘Combining Frame-Level and Segment-Based Approach

for Intention Recognition in Infant-Directed Speech’’). But

here the segments are categorized as vowels and consonants.

The utterance decision is made by the fusion of the local

a posteriori class probabilities. This approach can be viewed

as a segment dependent based approach:

Ei ¼ arg max
i

kVowPðCijVowÞ þ kConsPðCijConsÞf g ð3Þ

where P(Ci|Vow) and P(Ci|Cons) denote the local a poste-

riori class probabilities respectively estimated from vowel

and consonant segments. kVow and kCons represent the

weighting factors for the fusion process. Different strate-

gies have been employed for the estimation of the

weighting factors [41]: static and adaptative (depending on

the vowel–consonant duration ratio). Here, we report

results for the static fusion process and the optimization is

done on training data (as previously described in Sec-

tion ‘‘Combining Frame-Level and Segment-Based

Approach for Intention Recognition in Infant-Directed

Speech’’).

The segment dependent approach has been used for

classification [41] and we report the results for only seg-

mental characterization (MFCC) and with a k-nn classifier

for different times-scales. Table 2 presents the obtained

classification scores for both Berlin and Aholab databases.

Obviously, the extraction of segmental features from

voiced segments gives better results than unvoiced ones

and the fusion of them does not improve the performance.

Similar results have been also found for the communicative

intent classification (see ‘‘Combining Frame-Level and

Segment-Based Approach for Intention Recognition in

Infant-Directed Speech’’) but the main difference relies on

the impact of taking all the frames (voiced and unvoiced)

for authentic and noisy data as it is the case for the

motherese application (see Table 1).

By using the transcription, we extracted the same fea-

tures but from vowel and consonant segments. Promising

Fig. 3 Pseudo-phonetic approach: feature extraction, classification

and fusion
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results are obtained by the vowel time-scale for emotional

speech processing: for the Berlin corpus, we obtained

76.90% for the vowel time-scale and 69.66% for the con-

sonant time-scale. And by using the automatic and non

perfect segmentation procedure (Fig. 3), we, respectively,

obtain 73.20% for vowels and 65.60% for consonants. In

addition, we also investigated the fusion of these dependent

segment levels and the best results are still obtained by the

transcription (78.51%) but the pseudo-phonetic approach

(77.80%) is more efficient than the initial voiced segment

(73.80%).

The classification results can be correlated to the number

of speakers in the databases (Berlin: 10 versus Aholab: 2).

The Aholab corpus presents less confusions between

durations than the Berlin corpus and consequently the

results are better.

Conclusion and Perspectives

This article presents a method for the combination of time-

scale features: segmental (acoustic)/supra-segmental fea-

tures (prosody) and also vowel/consonant phonemes. The

cases studies provided (authentic and longitudinal interac-

tions, acted corpus) illustrate the usefulness of combining

different time-scale feature extractions for emotional

speech classification. The advantages of this approach are

the increase in robustness and also the integration of per-

ceptual knowledge related to emotional sounds. The liter-

ature has shown the relative prominence of vowel sounds

in the perception of emotions [9–11] and the reported

framework makes it possible to employ this phenomenon.

Our future works will be devoted to the characterization

of another important phenomenon such as the rhythm. The

role of rhythm in the perception of sounds is very important

[46] and it has been shown to be efficient for language

identification [43, 47]. Most of the models proposed in the

literature for the extraction of rhythmic features require the

definition of a rhythmic unit (e.g., vowels, syllable) and a

metric (inter, intra units)[48, 49]. A first application of

these models to emotional speech processing reveals

promising results [41].
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