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Abstract Camera calibration is a necessary step in 3D computer vision in order to
extract metric information from 2D images. Calibration has been defined as the non
parametric association of a projection ray in 3D to every pixel in an image. It is
normally neglected that pixels have a finite surface that can be approximated by a
cone of view that has the usual ray of view of the pixel as a directrix axis. If this
pixels’ physical topology can be easily neglected in the case of perspective cameras,
it is an absolute necessity to consider it in the case of variant scale cameras such as
foveolar or catadioptric omnidirectional sensors which are nowadays widely used
in robotics. This paper presents a general model to geometrically describe cam-
eras whether they have a constant or variant scale resolution by introducing the
new idea of using pixel-cones to model the field of view of cameras rather than the
usual line-rays. The paper presents the general formulation using twists of confor-
mal geometric algebra to express cones and their intersections in an easy and elegant
manner, and without which the use of cones would be too binding. The paper will
also introduce an experimental method to determine pixels-cones for any geometric
type of camera. Experimental results will be shown in the case of perspective and
omnidirectional catadioptric cameras.

1 Introduction

A large amount of work has been carried out on perspective cameras introducing the
pinhole model and the use of projective geometry. This model turns out to be very
efficient in most cases and it is still widely used within the computer vision com-
munity. Several computation improvements have been introduced [7], nevertheless
this model has limitations. It can only be applied to projective sensors. Slight fluc-
tuations in the calibration process lead to the fact that two rays of view of pixels
representing the same point in the scene, rarely exactly intersect across the same 3D
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(a) Pixel-cones of a perspective camera. (b) Catadioptric pixel-cones after reflec-
tion on a central mirror

Fig. 1 Pixel-cones in the case of perspective cameras and variant scale sensors (here a central
catadioptric sensor). All cones are almost the same in (a), whereas in (b) the pixel-cones vary
drastically according to the position of the pixel within the perspective camera observing the mirror.

point they should represent. Finally this model fails to introduce the reality of the
sensor, as the approximation of the field of view of the pixel is restricted to a ray
that can not match the real topology of the pixel that corresponds to a surface on the
image plane and not only a point. The limitations pointed out become drastically
problematic with the appearance of new kinds of non linear visual sensors like fove-
olar retinas [4], or panoramic sensors (see [2] for an overview). As show in Fig. 1(a)
in the case of a perpective cameras, the real field of view of pixels is a cone, in the
perspective case all pixels produce similar cones of view. Cones being barely the
same, it is easily understandable why cones can be approximated using lines in this
case. As shown in Fig. 1(b), for a catadioptric sensor (combination of a perspective
camera and a hyperboloid mirror) it becomes obvious that the approximation using
rays will lead to large imprecisions specially in the computation of intersections,
cones become then an absolute necessity. Different methods have been developed
to cope with the issue of non perfect intersection of rays in the case of perspective
cameras. Bundle adjustment is one of the major techniques (a complete overview of
existing methods can be found in [15]), it consists in refining a visual reconstruction
to produce jointly optimal 3D structure and more accurate viewing parameters esti-
mates. Optimal means that these methods are based on cost function minimizations.
This processing can be seen as a consequence of the use of rays rather than cones,
as we will show later intersections may happen even if the central rays of pixels do
not intersect. Non intersections do not necessarily reflect an imprecise calibration
result.

As shown in Fig. 2(a), most of the times, two rays do not have an exact inter-
section in 3D space. In most cases, they are separated by a distance d which can be
computed easily if the pose information are known. The intersection is considered
acceptable if it is under a certain threshold. The cones defined by the surface of the
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pixel encompass the rays of view of the pixels (Fig. 2(b)), each ray of view corre-
sponds to the directrix of each cone. The rays still do not intersect, but as shown in
Fig. 2(b) the cones do fully meet as the corresponding volume of intersection shown
in Fig. 2(c) is not zero. Applying a bundle adjustment in this case will not lead to
the best solution as the perfect intersection of the ray because it does not necessarily
correspond to the optimal intersection.

The aim of the paper is not to compare the bundle adjustment versus projective
pixel-cone of view, but just to show that introducing cones gives the opportunity
to be closer to the real physics of the intersection of pixels and thus generate more
accurate situations. The topic of comparing the bundle adjustment versus volume
optimization will surely be the topic of following paper. After explaining the im-
portance of cones, determining experimentally the cones of a sensor introduces the
necessity of developing a calibration procedure that will be presented in section 3.
Among the existing calibration methods, there has been recently an effort to devel-
opp new methods that can handle the most general sensors non necessarily central or
relying on caustics ([14, 9]) but in its most most general form as a set of viewpoints
and rays of view. The raxel approach [6] gave an interesting model for sensors dif-
ferent from the classic pinholes cameras. The association of a pixel and a direction
enables a wider range of camera calibration, but does not consider the non linear
resolution aspect of the sensors, and the variation of the solid angle of each pixel
field of view. [10] provides also a general geometric model of a camera, but again
the field of view of pixels is not taken into account.

d

Center ray 1 (c) Cones intersectio
Center ray 2

Pixel of camera Pixel of camera 2

Pixel of camera 1 Pixel of camera 1

(a) Two rays of light in a 3D (b) Cones of light.
space.

Fig. 2 Difference between ray of light and cone of light approach.

This paper is structured as follows. After describing in section 2 the mathematical
formulation of the general pixel-cones model using twists [13], an experimental
protocol to find the pixel cones of light is presented in section 3. Section 4 shows
the results got from this protocol applied on a pinhole camera and a catadioptric
sensor. Conclusions and future works are included in section 5.
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2 General model of a cone-pixels camera
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Fig. 3 Cones Geometric settings.

This section will present the general model of a camera using cone-pixels. There
are several possible ways to write the equation of a cone. A single-sided cone
with vertex V, axis ray with origin at V, unit-length direction A and cone angle
0 € (0,7/2) is defined by the set of points X such that vector X —V forms an angle
0 with A. The algebraic condition is A- (X —V) = |X — V|cos(6). The solid cone
is the cone plus the region it bounds, specified as A- (X —V) > |X —V|cos(6). It
is quite painfull to compute the intersection of two cones, and this tends to become
even more complicated integrating rigid motions parameters between the two cones.
Conformal geometric algebra through the use of twists allows to construct a wide
variety of kinematics shapes. There exist many ways to define algebraic curves [3],
among them twists can be used to generate various curves and shapes [13]. A kine-
matic shape is a shape that results from the orbit effect of a point under the action of
a set of coupled operators. The nice idea is that the operators are what describes the
curve (or shape), as introduced in [13] these operators are the motors which are the
representation of SE(3) in %4 1. The use of twists gives a compact representation of
cones and brings the heavy computation of the intersection of two general cones to
a simple intersection of lines. The reader unfamiliar with geometric algebra, should
refer to [8, 5] for an overview of geometric algebra, examples of its use in computer
vision can be found in [11, 12].
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2.1 Geometric settings

As shown in Fig. 3 in the case of a perspective camera, the image plane here repre-
sented by I contains several rectangular pixels p(i, j), where i, j corresponds to the
position of the pixel. Considering p(i, j), its surface is represented by a rectangle
defined by points Ag...As, with Ay corresponding to the center of the rectangle.

Given a line 1 (with unit direction) in space, the corresponding motor describing
a general rotation around this line is given by : .#(6,1) = exp(—21). The general
rotation of a point Xg around any arbitrary line | is :

Xg = M (0,)x9.4(6,1) (1)

The general form of 2twist generated curve is the set of points defined x4 such as :
Xo = M (220.1).4" (210, 1)x0. 4" (110, 1).4>(26.1;) )

In what follows we are interested in generating ellipses that correspond to the values
A1 =—2and A, = 1.]; and I, are the two rotation axis needed to define the ellipses
[13].

Considering a single pixel p; ; (see Fig. 3), its surface can be approximated by the
ellipse generated by a point A that rotates around point Ag with a rotation axis cor-
responding to e3 normal to the plane 1. The ellipse &/(0) generated corresponding
to the pixel p; ; is the set of all the positions of A :

Ve € [07--3277:}7 gi,j(e) - {AG :%2(67172)%1(7297171)A0%1(*267171)%2(07172) ‘ }

The initial position of A is to A;i¢- The elliptic curve is generated by setting the
two connected twists so that to obtain an ellipse with principal axis (AgAg,AsAo)
in order to fit the rectangular surface of the projection of the pixel as shown in Fig.
3. It is now possible to generate the cone corresponding to the field of view of the
pixel. We set the line 5[ E cone axis corresponding to p; ; as :

Ei,j = EAQ/\AO

Let the line @i*j be the generatrix of the cone. The pixel-cone of view of p; ; is the
cone €/ defined by :

€ (0) = ‘//l(eylﬂi7j)k)7Ai’j//i(6’lﬂi.j) 3)
with ///(9,1701."].) = exP(_gLOi,j)-
The same process is to be applied again after translating the pixel p; ; using

t; and t;, that corresponds to the translation to switch from one pixel to the other.
The projection p; ; of a pixel is moved to a next pixel :

pistjr1 =T () T (t)pi; T (1) T2 ()
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where 7 (t) correspond to a translation operator in CGA.

2.2 The general model of a central cone-pixel camera

The general form of a central sensor whether it is linear scale (cones vary slightly)
or variant scale is the expression of a bundle of cones. All cones %"/ will be lo-
cated using spherical coordinates and located according to an origin set as the cone
%9(), that has e3 as a principal axis. The general form of a central linear scale

\

(a) A bundle of pixel-cones (b) A bundle of pixel-cones of
of a central linear sensor. a central variant linear sensor

Fig. 4 Different configurations of pixel-cones, in the case of linear and variant scale sensors. In
red the principal cone according which every other is located.

camera (Fig. 4(a)) is then simply given by :

Cyoy(0) = AP (,e23). 1 (9,13)677 (0). M (9, €13). 4 (W, e23) (4

with 0, ¢ denote the spherical coordinates of the cone.

The general form of a central variant scale sensor is slightly different. Each cone
having a different size, cones need to be defined according to their position. A cone
‘é;’v, is then defined by the angle between its vertex and generatrix. Due to the

central constraint, all cones have the same apex. The rotation axis l_oi’j of ‘fl;/d) giving

its location is computed from 1_00’0 of ‘K(? ’00 is then :

" = A (y,e03).0 " (9, €13)lg" 1 (9, e13).42(y, €23) ®)]
Its generatrix I/ is defined as:

1 = #(0,e02)ly™ .4 (6, e12) ©)

The expression of (féjw can then be computed using equation(3).
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2.3 Intersection of cones

The intersection of two cones & im; {;”n and ‘5'”’{;, can simply be computed using the

meet product that results in a set of points of intersection P, , between the generatrix
lines of the cones :
Pm,n — { lWth \/rgl}’h]n } (7)

If the intersection exists Py, , is not empty, the set of points then form a convex hull
which volume can be computed using [1].

3 Experimental protocol

Cones being at the heart of the model, we will now give the experimental set up of
the calibration procedure to provide an estimation of the cone of view of each pixel
of a camera. The method is not restricted to a specific camera geometry, it relies on
the use of multiple planes calibration ([6, 16] ). As shown in Fig. 5, the camera to be
calibrated is observing a calibration plane (in our case a computer screen), the aim
is to estimate the cone of view of a pixel p; j, by computing for each position of the
screen its projection surface SP*(i, j), k being the index of the calibration plane. The

R2,T2 RITIL_————

27 A

Unknown
sensor P |

%

Fig. 5 Experimental protocol : Cone construction and determination of the center of projection of
the sensor. The R;, T; represent the rigid motion between the reference camera and the calibration
planes coordinates system.

Reference Camera
R4,T4 R3.T3 L ‘

[]
lo==

SP4(i)

metric is provided using a reference high resolution calibrated camera (RC)' that
observes the calibration planes. The reference camera uses the calibration planes
to determine its parameters, the position of each plane is then known in the RC
reference coordinates, and implicitly the metric on each calibration plane too. The
impact surfaces SPXi, j) once determined on each screen lead normally as shown in
Fig. 5 to the determination of all pixel-cones parameters.

Fig. 6 shows the experimental set up carried out for the experiments. The key-
point of the calibration protocol relies then on the determination of pixels’ impact
SPk(i, j). The idea is then to track the activity of each pixel p(i, j) while they are
(see Fig. 8) observing the screens calibration planes. At each position the screen is

! 6 Megapixel digital single-lens Nikon D70 reflex camera fitted with 18-70-mm Nikkor micro
lens. The micro lens and the focus are fixed during the whole experiment.
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=] Screen calibration h .
plane in position K
v a
: Catadioptroc sensor

(a) Case of a pinhole camera as (b) Case of a catadioptric sensor
UIS. as UIS.

Fig. 6 Experimental protocol for two kinds of UIS (Unknown Image Sensor) .

showing a scrolling white bar translating on a uniform black background (see Fig.
6). The bar will cause a change in the grey level values of pixels when it is in their
cone of vision. The pixels’ gray-level increases from zero (when the bar is outside
SPk(i, j)) to a maximum value (when the bar is completely inside SP*(i, j)), and
decreases down to zero when the bar is again outside SP(i, j). Fig. 8 gives a visual
explanation of the process.

A sensitivity threshold can be chosen to decide pixels’ activation. Using the ref-
erence camera calibration results, it is then possible once SP¥(i, j) is determined to
compute its edges as the positions of y;, and y,,;, in the RC coordinate system. The
bar is scrolled in two orthogonal directions providing two other edges x;, and x,,,;
(Fig. 7), the envelope of SP* (i,7) is then completely known. The location and size
of pixel-cones can then in a second stage be estimated once all SPX(i, j) are known.
Cones are computed using the center of SPX(i, j) that give the rotation axis, the en-
velope is given by computing rays that pass through all the intersection points of the
vertex of each SP¥(i, j) corresponding to each pixel (Fig. 5).

O @O
y |- —>t-> 5

Yin out

<

1

Xout

—
\

Bar| scrolling
> >

Ve < <

Screen pose k

Fig. 7 Intersection surface SP¥(i, /) between the calibration plane k and the cone % (i, /)
4 Experimental results

The following experiments were carried out using PointGrey DragonFly®2, with a
640x480 resolution and a parabolic catadioptric sensor with a telecentric lens, both
are central sensors. (Fig. 6(a)). Fig. 9 shows cones reconstruction on SPl(i, J) and
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Fig. 8 Pixel response according to the scroll bar position: pixel activity.

SP?(i, j) in the case of a pinhole camera. Only few cones were drawn, it is then a
expected result to see repetitive pattern corresponding fields of squares of estimated
pixels impact.

Fig. 9 Cones of view in the case of a pinhole camera.

In the case of the catadioptric camera, it is a geometric truth that the aperture
angle of each cone will increase as pixels are far from the optical axis of the camera.
This phenomenon is experimentally shown in Fig. 10 where the evolution of the
solid angle of pixel-cones are presented. In principle the solid angle should not
depend on the position of the calibration plane that was used to compute it, the
curves are then very close even if a small bias appears for very large cone-pixels
at the periphery of the mirror where the uncertainties of the measure on the surface
due to the non linearity of the mirror are the highest.

The method allows the estimation of the position of the central point of the cali-
brated sensor. in the case of the pinhole camera the calibration screens were located
between 800 — 1050 cm from the reference camera, while the camera to be cali-
brated was set few cm far (see Fig. 6). In order to obtain a ground truth data the
pinhole camera was calibrated using classic ray method. Three position of the op-
tic center are then computed for comparison. the first one is given by the classic
calibration, the second by the intersection of the rotation axis of estimated cones
and the last one by the intersection of all rays representing estimated cones. The
results are shown in Table.1) We notice that a single viewpoint has been found for
each one, the classic ray method and the use of the rotation axis produce very sim-
ilar results. There are slight variations in the position of the center using the third
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Cone of view: Solid Angle (in sr)

Mirror radius (in mm)
30 40
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Fig. 10 Solid angle of view according to the mirror radius.

Table 1 Central projection point estimation coordinates: case of a pinhole camera

Ground Truth Axis estimation Error Apex estimation Error
x -7833 -78,97 0,65 78,97 0,65
y 4536 44,07 1,28 44,07 1,29
z 45,74 57,89 12,16 57,90 12,16

approach that can be explained by the fact that the calibrated portion of the sen-
sor used to estimate cones was limited (55 x 60 pixels located around the center
of the image). Concerning the catadioptric sensor, the results show that the cones
intersect at a single point. The a combination of a parabola and a telecentric lens
can only produce a central sensor, so far the method proved to be efficient. The es-
timation of the position of the viewpoint using the principal axis of the estimated
cones and all the rays that form the estimated cones produce similar results (in mm:
x = —23.38,y = 147.55,z =384.79 and x = —23.32,y = 147.33,z = 385.57). The
mean distance between the rotation axis and their estimated single point is 3.71 mm.
The mean distance between the apex and their estimated single point is 2.97 mm.

5 Conclusion

This paper presented a general method to modelize cameras introducing the use
of cones to give a better approximation of the pixels’ field of view (rather than
the usual use of lines). We also introduced an experimental protocol to estimate
cones that is not restricted to any geometry of cameras. The presented model used
conformal geometric algebra that allowed to handle cones in a simple manner using
twists. Geometric algebra allows natural and simplified representations of geometric
entities without which the formulation of the problem would have been much more
difficult. We are extending the use of cones to non central cameras that are variant
scale and for which the use of lines is inadequate. Non central sensors introduce
major improvements in the field of view of robots as they allow a better and a more
adapted distribution of rays that eases the tasks to be performed.
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