
SIMULATION OF HYBRID SYSTEMS
USING STATEFLOW

Anis SAHBANI, Jean-Claude PASCAL

LAAS-CNRS 7 avenue du colonel Roche 31077 Toulouse Cedex 4 France
Email: asahbani@laas.fr, jean-claude.pascal@laas.fr

KEYWORDS

Hybrid systems, Hybrid simulation, Statecharts,
Stateflow, Matlab.

ABSTRACT

This paper deals with the simulation of hybrid systems.
These systems mix two different aspects: continuous and
discrete. Their simulation presents many problems mainly
the synchronisation between the two models. Stateflow,
used to describe the discrete model, is co-ordinated with
Matlab, used to describe the continuous model. The gas
storage example is used to illustrate the co-ordination of
the two simulators.

I. INTRODUCTION

Hybrid systems combine two types of components:
subsystems with discrete dynamics and subsystems with
continuous dynamics that interact with each other
[Antsaklis and Lemmon 98]. Particularly, in the Batch
process, continuous and discrete aspects are closely
linked.

This hybrid aspect is present in every level of the
hierarchical decomposition of a control system: from the
higher level, which is supervision, to the lower one,
which is local control. The continuous and discrete
aspects correspond to two different worlds, which give
two different views of the system. The discrete view is
not only an abstraction of the continuous one, but the two
views are complementary of one environment [Andreu
and al.96].

Since these two dynamics coexist and interact with each
other, it is important to develop models that can reflect
this coexistence. Many models have been developed or
extended to specify such systems. We can mention for
example Hybrid Automata [Alur and al.95], [Puri and
Varayia 96], Hybrid Petri Nets [Le Bail and al.91],
Differential Predicate Transition Petri Nets [Champagnat
and al.98a], Hybrid Statecharts [Kesten and Pnueli 92],
[Gu�guen96]. One of the methods for validating such
models is simulation.

Hybrid simulation is used when some of the variables are
continuous and the others are discrete. It is based on the
connection and interaction of two submodels. Continuous
and discrete simulations progress in alternation.
Continuous simulation takes care of the continuous
dynamic and is executed while no event has been
detected. This event can either be foreseeable (for
instance, a temporal event) or unpredictable
(overstepping of a threshold by some variables of the
model). The numeric algorithm yields to the discrete part
and waits until a stable state is reached.

The coexistence of two different aspects causes many
problems in simulation. In fact, the main problem is the
synchronisation between the two models.

The first part of this paper focuses on the different
manners of modelling hybrid systems. The second is
dedicated to the problematic of hybrid simulation. We
then illustrate the approach taken through an example,
and we conclude by giving some simulation results.

II. HYBRID MODELLING

Two classes of hybrid model are distinguished
[Champagnat and al.98a]. The first class, known as
integrated formalism, extends one of the models (discrete
or continuous) in order to specify and describe the
system. The second class of models co-ordinate the
discrete model and the continuous one; this is the
approach that we have taken. This choice is due to the
fact that using a model for each component retains the
specification potential of each domain. Continuous and
discrete aspects correspond to two different worlds
presenting two different views of a system. In this
section, three models belonging to the second class are
described.

II.1. Hybrid automata

Hybrid automata are a finite state enriched with a finite
set of real valued variables [Alur and al.95]. At a location
(discrete state), the values of the variables change
continuously with time according to the associated
differential equations and as long as the locationÕs
invariant remains true. When the transition guard
(conditions relating to the continuous variables) becomes
true, the system evolves to another location.

II.2. Hybrid statecharts

The Statecharts formalism is presented by Harel in [Harel
87]. Statecharts are augmented with a notation that allows
a basic state to be annotated by a differential equation.
The implied meaning is that whenever the state is active,
the associated differential equation is operational.
Interested readers may find more details in [Kesten and
Pnueli 92]. Transitions are labelled by a label which
typically has the form event/action. The event triggers the
transition and the optional action is performed when the
transition is taken. In addition, an event can be related to
a continuous variable for example, when a threshold is
crossed. An action can also consist of an update of the
continuous variable.

II.3. Differential Predicate/Transitions Petri
nets

This model combines Predicate/Transitions Petri Nets and
differential algebraic equations. Petri nets are used to
represent the different configurations of the system, i.e.
discrete aspects. A set of differential algebraic equations
is associated to each place. The tokens carry a set of
information concerning the different parameters used in
the next operational differential equations and mainly the
updating of some variables. The choice of token is
determined by additional conditions for triggering
transitions.

III. HYBRID SIMULATION

III.1. Problematic of hybrid simulation

Many problems are faced while simulating hybrid
processes [Monsterman 99]. Firstly, the starting phase of
the solver is repeated a certain number of times in the
simulation. It is therefore important to take care of the
transmission of the initial value of the variable each time
the integration is restarted.

Furthermore, while it is easy to detect a temporal event,
the detection of an unforeseeable event (such as an
overstepping of a threshold) is non trivial. Nevertheless,
once this event has been detected, the solver must be able
to rollback to the time of its occurrence.

Finally, the action linked to the event can introduce a
modification in the system’s configuration. The subset of
equations used as a model must be modified. The solver
must be robust in the face of this problem. Figure 1
describes how an event defined by (Xthreshold , tthreshold) is
not detected in an integration step {(Xi , ti) ; (Xi+1 , ti+1)}.

III.2. Stateflow: a working environment for
the simulation of complex reactive
systems

Stateflow is a tool integrated in the Matlab environment
and used for the development and the simulation of
complex reactive systems. It uses a variant of the finite
state machine notation established by Harel [Harel87].
Specifically, it uses the hybrid Statecharts formalism
presented previously with additional element which is
introduced to complete such formalism. A Stateflow
diagram is a graphical representation of a finite state
machine. It provides a block that can be included in a
Simulink model. Additionally, it enables the
representation of hierarchy, parallelism and history.
Hierarchy enables the organisation of complex systems
by defining a parent/offspring object structure. A system
with parallelism can have two or more orthogonal states
active at the same time. History provides the means to
specify the destination state of a transition based on
historical information. Figure 2 describes the integration
of Stateflow in the Matlab environment and its interaction
with Simulink.

Xi

Xthreshold

Xi+1

X(t)

ti tthreshold ti+1

Integration step

Figure 1

Simulink
Block

Simulink
Block

Simulink
Block

Stateflow Model

Simulink Model

Matlab Environment

Figure 2

In the next section, we will present an example in order to
illustrate the use of the hybrid Statecharts formalism. The
implementation of such model in Stateflow and Matlab
environment will also be described.

III.3. A gas storage example

The gas is stored between a production unit and a
customer unit. The goal of the storage tank is to introduce
a buffer in order to facilitate the balance between
production and customer demand (Figure 3). This storage
cannot be simultaneously fed and drawn [Champagnat
and al.98b].

Pc
d c

Production

Pp
d p V1

V2
VR1
W R1

Cp
W Cp

P2
P3

V3

V7

Storage
S

V4 V5

P4

V6

Cc
WCc

P5

VR2
W R2

Customer

As a consequence of this constraint, the storage can either
be by-passed (configuration 1), or the production is
greater than the customer flow so the surplus is
transferred to the gas storage (configuration 2). It can also
be either in configuration 3, where the production flow is
lower than the customer one so the lack of gas
compensated by drawing the storage, or in configuration
4, where the production unit is stopped. All these
configurations are presented in figure 4.

III.4. Gas storage modelling

In this section the storage modelling is described. The
description shows the Statecharts and differential
algebraic equations interacting. The gas storage has five
discrete states: the four configurations presented and a
breakdown state. As a consequence, the Statechart model
has five states as presented in figure 5.

Conf. 2

Conf. 1 Conf. 3

Conf. 4

[dp=dc]

[dp=dc]

[dp>dc]

[dp>dc] [dp<dc]

[dp=0 or volume<=vmin]

[dp<dc]
[dp=0]

Volume>=vmax

[dp>dc]

[dp<dc]

[dp=dc]

Breakdown

[Pressure<=pmin]

[Pressure<=pmin]

Figure 5

The purpose is to facilitate the switch between production
and the customer demand. This switch depends on the
debit, the pressure and the volume before and after the
storage. The pressure and the volume must remain
between a minimum and a maximal value.

Differential algebraic equations are associated to each
state describing the physical evolution of the continuous
variables. When a state is active, the equations associated
are operational. The equations are:

Configuration1: 0
dt

sdU
=

dUs

dt
= d p − dc

Configuration2: Ps . Vs = Us . R.T

Vs = 353.6 . Ps. 10 Ps − P0()()5/ 2

dUs

dt
= d p − dc

Configuration3: Ps . Vs = Us . R.T

Vs = 353.6 . Ps. 10 Ps − P0()()5/ 2

cd
dt

sdU
−=

Configuration4: Ps . Vs = Us . R.T

Vs = 353.6 . Ps. 10 Ps − P0()()5/ 2

III.5. Simulink and Stateflow models in the
Matlab environment

The discrete part is developed using Stateflow. As shown
in figure 6, the same Statechart diagram is reproduced.
When a state is activated, the differential algebraic
equations associated become operational and they are
resolved using a Matlab function. The synchronisation
between the activation of a state and the solving of the
associated equations is assured by means of the entry
function. Some parameters of the solving function assure
the updating of the variables used in the equations
associated to the active state (ml.volume, ml.pressure).

Figure 3

Figure 4

Configuration 1 Configuration 2

Configuration 3
Configuration 4

The first parameter of the solving function indicates the
file in which are introduced the equations used in this
step. The remaining parameters define some of the
thresholds which must be respected. The confi variables
represent the activation and the disactivation of a state.
They are defined as outputs to the Simulink model. When
breakdown state becomes active the simulation is stopped
(stop=1).

The customer and the production flows (Dc and Dp) are
represented in the Simulink model by means of sine
waves with steps. Steps are used only to have positive
debits. These flows are defined in Stateflow model as
input from Simulink. Figure 7 represents the Simulink
model.

The differential algebraic equations are solved using a
function developed in Matlab. This function uses a
Matlab function, which needs a fixed interval of
integration and gives vectors of points every step. The
initial solving interval is fixed according to the dynamic
of the system. At each step, the last values of the given
vectors are compared with the thresholds. Two cases are
possible: either the threshold isn’t reached then the
simulation interval is translated and another integration is
launched, or the threshold is exceeded then the vector is
saved. In this case, each point of this vector is compared
with the threshold and only the values below the
threshold are saved. Another integration can be launched
with a simulation interval corresponding to the critical
points (just before and just after an overstepping of a
threshold) in order to obtain better precision.

In this implementation, the differential algebraic
equations are simplified due to the limit of the Matlab
function used in our solver. Indeed, the object of this
paper is not to develop a sophisticated solver but to show
how we can co-ordinate two different simulators.

III.6. Simulation results

While simulating hybrid systems, problems, which are
previously described, are faced. The first one, concerning
the initial value of some variables, is solved by
broadcasting these values when their relative state is
activated. The final value of the shared variables in the
last integration are stored and transmitted as initial ones
when an triggering transition event happen. Furthermore,
a temporal event is detected, as described previously, by
comparing all the value stored while one simulation step
with the threshold. The solver rolls back to the time of its
occurrence. Another integration can be launched to obtain
better precision around the threshold.

It might appear that the use of a Matlab function could be
avoided by introducing the differential algebraic
equations using the Simulink model. However, this
approach would not preserve the separation between the
continuous and the discrete aspects, which be mixed in a
single model. In other terms, switch blocks must be
introduced to transmit initial values of some variables
and to toggle between equations systems.

Figure 8 and 9 show respectively the evolution of volume
and pressure. We remark that the two variables have
never overstepped the threshold fixed. Figure 10 shows
the evolution of two continuous variables, which are the
customer and the production flows, the other variables are
relative to the activation of the state.

Figure 6

Figure 7

Figure 8

IV. CONCLUSION

In this paper, the gas storage process has been modelled
using Hybrid Statecharts and simulated using Stateflow, a
Matlab toolbox. The use of specific models for each
aspect (discrete and continuous aspects) allows the
preservation of the modelling potential of each domain.
Matlab, as a continuous simulator reference, offers its
powerful modelling of the continuous part of hybrid
system. Stateflow specifies the discrete behaviour of
hybrid processes using the Statechart formalism. The
latter lacks the modelling potential given by the Petri
Nets. Nevertheless, for sequential systems where resource
sharing is limited, the use of Stateflow for simulating
hybrid systems can present a great relevance. The
integration of two simulators avoids the development of
an interface between the discrete and the continuous
simulator.

Further works are concerned with coupling Matlab and a
discrete simulator based on Petri Nets in order to have a
better description for the discrete model.

Other works are also concerned with the development of
a performed solver in order to cover the lack the one used
to simulate our example.

REFERENCES

[Alur and al.95] R. Alur, C. Courcoubetis, N.
Halbawchs, T.A. Henzinger, P.H. Ho, X. Nicollin, A.
Olivero, J. Sifakis and S. Yovine. The Algorithmic
Analysis of Hybrid Systems. Theoretical Computer
Science, 138:3-34, 1995.

[Andreu and al.96] D. Andreu, J.C; Pascal and R.
Valette. Events as a Key of Batch Process Control
System. CESA’96 IEEE-SMC IMACS Symp. On
Discrete Events and Manufacturing Systems, p. 297-
302. Lille, France, 1996.

[Antsaklis and Lemmon 98] P. Antsaklis and M.
Lemmon. Discrete Event Dynamic Systems : Theory
and Applications, 8, 101-103. 1998 Kluwer Academic
Publishers, Boston.

[Champagnat and al.98a] R. Champagnat, P. Esteban,
H. Pingaud, R. Valette. Modelling and Simulation of a
Hybrid System through Pr/Tr PN-DAE Model.
ADPM’98 conf. On Automation of Mixed Process :
Dynamical systems. Reims, France, 1998.

[Champagnat and al.98b] R. Champagnat, H. Pingaud,
H. ALLA, C. Roubinet and J.M. Flaus. A Gas Storage
Example as a Benchmark for Hybrid Modelling.
ADPM’98 conf. On Automation of Mixed Process :
Dynamical systems. Reims, France, 1998.

[Gu�guen 96] H. Gu�guen. Use of Statecharts and Signal
for the Specification of Control of Hybrid Systems.
CESA’96 IEEE-SMC IMACS Symp. On Discrete
Events and Manufacturing Systems. Lille, France,
1996.

[Harel 87] D. Harel. Statecharts: A Visual Formalism for
Complex Systems. Sci. Comp. Prog.,8: 231-274,
1987.

 [Kesten and Pnueli 92] Y. Kesten and A. Pnueli. Timed
and Hybrid Statecharts and their Textual
Representation. LNCS: Formal Techniques in Real
Time and Fault Tolerant Systems, Nijmegen 1992.

[Le Bail and al.91] J. Le Bail, H. Alla and R. David.
Hybrid Petri Nets. European Control Conference, pp.
1471-1477, Grenoble, France, 1991.

[Mosterman 99] P. J. Monterman. An Overview of
Hybrid Simulation Phenomena and Their Support by
Simulation Packages.

[Puri and Varaiya 96] A. Puri and P. Varaiya.
Verification of Hybrid Systems using Abstraction.
IFAC: 13th Triennial World Congress, San Fransisco,
USA 1996.

Figure 9

Figure 10

