
COMPACTING A RULE BASE INTO AN AND/OR DIAGRAM FOR A GAME AI

Samuel Manier1, 2 and Olivier Sigaud1

(1) Institut des Systèmes Intelligents et de Robotique
CNRS FRE 2507 Université Pierre et Marie Curie – Paris 6

4, place Jussieu, 75005 Paris, France

(2) Cyanide Studio
65, boulevard des bouvets,
92000 Nanterre, France

Samuel.Manier@gmail.com, Olivier.Sigaud@isir.fr

KEYWORDS
Game AI, Rule base, Decision Diagram, And/Or Diagram,
Behavior Tree, Cycling simulation.

ABSTRACT

A game Artificial Intelligence defined by if-then rules can
become hard to maintain and expand. In this paper we
present a method to transform in a compact way a rule base
into an And/Or Diagram, a hierarchical structure easier to
manage over time. Our method is illustrated in a commercial
cycling simulation video game.

INTRODUCTION

In game Artificial Intelligence (AI), simple if-then rules are
often preferred over more powerful architectures such as
Hierarchical Finite State Machines (HFSMs) (Harel 1987) or
Behavior Trees (BTs) (Champandard 2008), because they do
not require developing any complex engine or editor.
Thanks to their simplicity, developers can quickly compose
simple behaviors for game agents. However, their poor
maintainability and scalability make them inappropriate
when the complexity of these behaviors exceeds a certain
degree. But the growth in complexity is not always easy to
anticipate, especially for game series, such as sport games,
which evolve in sequels in a more and more complex
manner. In such a context, developers are often constrained
to update their AI by rewriting it from scratch in a better
formalism when it becomes too complex, depriving them of
the possibility of re-using the knowledge contained in the
original AI.

In this paper, based on our experience with a commercial
sport video game, we propose a method to transform and
compact semi-automatically a rule base in what we call an
And/Or Diagram (AOD), whose formalism is close to the
one of a BT. This method is divided into successive steps of
transformation from a formalism to another:

 the semi-automatic transformation of the rule base
into a decision diagram base;

 the automatic conversion of the decision diagram
base into an AOD;

 the automatic refining (factorization and
simplification) of the AOD;

In the following sections, we will detail those steps, present
an application of our method to the Pro Cycling Manager
game developed by Cyanide and discuss it, before
concluding and giving future work directions.

TRANSFORMING A RULE BASE INTO AN AOD

Our starting point is an action selection system defined by a
rule base where each rule has a premise, a conclusion and a

priority (see Figure 1 for a small example). A premise is a
conjunction of conditions on variables, a conclusion is a
conjunction of discrete actions, whereas priorities define the
order of rules testing, forbidding the activation of multiple
rules at the same time.

r1: if V1 = true and V2 < 50 and V3 < 10 then do Action1
r2: if V1 = true and V2 < 50 and V3 > 20 then do Action2
r3: if V1 = true and V4 = true then do Action3
Figure 1: Three if-then rules forming a rule base, ordered by

decreasing priority. V1, …, V4 are variables.

The successive steps to transform and compact a rule base
into an AOD are presented in the following subsections.

From A Rule Base To A Decision Diagram Base

The rule base we described is a flat structure that cannot
handle common properties of rules without calling upon
redundancy (for example, in Figure 1, the condition V1 =
true is repeated in each rule). This can slow down
considerably the understanding, the modification and the
evolution of the AI. In this section, we explain how we
reduce this redundancy by representing the rule base into a
decision diagram base.

A decision diagram (Akers 1978) is a rooted Directed
Acyclic Graph (DAG) composed of:

 decision nodes . A decision node represents a test on
the value of a variable;

 edges . An edge coming from a decision node
represents a condition on its variable;

 leaves . A leaf represents a solution to the decision
diagram problem (for an action selection problem, a
leaf is an action or a set of actions).

A decision diagram is executed from the root. At each
decision node, the next visited node is designated by the
edge whose condition is satisfied, until a leaf is reached.

We propose an algorithm to transform a rule base into what
we call an Ordered Multi-Terminal Algebraic Decision
Diagram (OMTADD) (designation deriving from Ordered
Binary Decision Diagrams (OBDDs), Multi-Terminal Binary
Decision Diagrams (MTBDDs) [Drechsler and Sieling,
2001] and Algebraic Decision Diagram (ADD) [Bahar et al.
1993]). An OMTADD is:

 Algebraic , because we use non binary variables
(they can be Boolean, integer, float or defined by
enumeration);

 Multi-Terminal , because we use non binary answers
(in the leaves);

 Ordered , because our algorithm needs an order on
variables.

In the rest of this paper, DD stands for OMTADD for short.

Our algorithm is a modified version of the DPLL procedure
proposed by Huang and Darwiche (Huang & Darwiche
2004). The DPLL procedure is originally designed to
transform a Conjunctive Normal Form (CNF), i.e. a
conjunction of disjunctive conditions, into an OBDD. We
adapted it to transform a rule base into a DD.

This algorithm requires an ordering on the variables. But,
finding a good ordering for many variables is a hard
problem. The resulting decision diagram can be huge if this
ordering is not carefully chosen. We narrow down this
problem by dividing the rule base into smaller rule bases,
each one concerning a small enough subgroup of variables.
It boils down to do the intuitive operation of regrouping
rules using the same variables, or almost the same variables,
together. However, this reorganization is constrained to
respect rules priorities: the resulting rule bases are ordered
by priority, each small rule base getting the priority of its
first rule, and the following property is imposed: let r1 and r2

be two rules with compatible premises, r1 belonging to the
rule base R1 and r2 to the rule base R2 (with r1 ≠ r2 and R1 ≠
R2). R1.priority > R2.priority implies that r1.priority >
r2.priority.

The transformation of each resulting rule base into a DD is
done separately by the omtadd algorithm presented below.
We first give a brief summary and some definitions.

In this recursive algorithm, variables are instantiated
successively with all their possible values. This makes
premises of some rules becoming satisfied, creating decision
nodes (corresponding to variables instantiations) and leaves
(corresponding to rules conclusions). When several nodes
are equivalent, only one is kept. The use of cutsets allows
anticipating equivalence between nodes, avoiding computing
them all.

Our definition of a cutset is the same as in (Huang &
Darwiche 2004), with “clause” replaced by “rule”: the i th

cutset of variable order π = v1,…,vn for the rule base {r1,…
rm}, denoted cutseti

R(π) or cutseti for short, is defined as {r
∈R : ∃j ≤ i < k such that rule r mentions variables v j and
vk in its premise}.

A cutset value is a bit vector, each bit representing the state
(satisfied or simplified) of the premise of a rule of this
cutset. When two ore more configurations are found to have
the same cutset value, only one of them will be computed, its
DD cached, and others will simply generate a cache hit and
have their DD immediately returned.

In a DD, the fail action is the one activated when all the rules
represented by the DD fail. In that case, the next DD (with a
lower priority) is evaluated.

Algorithm omtadd(Rules R, int i) : return the root node of
the DD corresponding to the rule base R, whose rules are
ordered by priority, according to a fixed order on variables. i
is the current variable index.

if at least the premise of one rule is true then
let r1 be the rule of highest priority among rules with
a true premise;
if there is no rule r2 with simplified premise such that
r2.priority > r1.priority and r2.actions ≠ r1.actions
then

return r1.actions;
if all variables are instantiated then

return the fail action;
if (node_already_computed = cachei-1[value(cutseti-1)]) ≠
nul then

return node_already_computed;
result = create_node (R, i);
cachei-1[value(cutseti-1)] = result;
return result;

Function create_node(Rules R, int i) : create a node, or
return an already existing node, where the variable of index i
is tested.

let N be an empty set of nodes;
for each possible value val of the variable vi, do

N.insert(omtadd(R|vi = val, i+1));
if all the nodes in N are equals then

return the first one;
else

let Node[i] be the set of nodes representing the
variable of index i;
for each node n of Node [i], do

if the children of n are exactly the nodes in N then
return n;

result = Node(i, N);
Node[i].insert(result);
return result;

Function Node(i, N) : create a node having i as variable
index and the nodes contained in N as children.

The choice of the variable order in a BDD is hard [Tani
1993]. This is especially true for an MTADD, which is more
complex than a BDD. Therefore, we do not automate that
part: we proceed manually, by trial and error, to the choice
of the variable order of each rule base, until we obtain a DD
with a low enough degree of redundancy.

Figure 2 shows a DD resulting from the transformation of
the rule base extracted from the rule base of Figure 1. We
can see that the redundancy of conditions V1 = true and V2
< 50 is avoided.

Figure 2: The DD resulting from the transformation of the
rule base in Figure 1, according to the following variable

order: V1, V2, V3, V4. The Fail action and edges that lead to
it are not represented.

From A Decision Diagram Base To an AOD

DDs can represent disjunctions (see else edges in Figure 1
and, for another type of disjunctions, left side of Figure 3).
But when these disjunctions involve numerous conditions,
some nodes may have to be accessed from many edges. This
contributes to slow down the editing of DDs (e.g. in Figure
3, replacing the node N by a node N’ would require
reconnecting to N’ all edges leading to N). In this section,
we show how we convert DDs into AODs. AODs represent
disjunctions by OR nodes which, combined with AND
nodes, make the AI modular and easier to reconfigure. The
connection of all AODs into a single AOD is also explained.

An AOD is a rooted DAG where nodes can be either leaves
(conditions, actions or a named link to other AODs) or
composite nodes. There are different types of composite
nodes:

 AND nodes . An AND node succeeds only if all its
children succeed;

 OR nodes . An OR node succeeds if at least one of
its children succeeds. Its children are ordered by
priority;

 If-Then-Else nodes . An If-Then-Else node succeeds
if both its If and Then children succeed or if its If
child fails and its Else child succeeds. An
equivalent of an If-Then-Else can be constructed
with one OR node and two AND nodes.

The execution of an AOD starts from the root in a depth-first
search. When a node fails, we backtrack to its parent and
continue its execution (e.g. an OR node will execute its next
child whereas an AND node will fail). Leaves representing
actions always succeed.

We call successful sub-diagram the result of the execution of
an AOD. It is composed of nodes that succeeded and that
have a parent (except for the root) belonging to this sub-
diagram. Actions contained in the successful sub-diagram
form together the final decision.

The conversion of a DD into an AOD is done by searching
recursively for patterns upon which we apply transformation
rules in a priority order. These rules are explained in the
following figures (from Figure 3 to Figure 6) presented in
decreasing priority order. In these figures, nodes N, N1, N2
and N3 are not necessarily leaves, and nodes V and V1 are
not necessarily roots.

Figure 3: Conversion of a DD with disjunctions into an
AOD.

Figure 4: Conversion of a DD with another type of
disjunctions into an AOD.

Figure 5: The general case, from the preceding rule, when
the last decision node (here V3) has more than two children

Figure 6: Conversion of a conjunction of conditions leading
to the node N into an AND node responsible for the

execution of these conditions and N.

AODs benefit from their hierarchical organization (see
Figure 7 for an example): a sub-diagram can be seen as a
high level condition (if all its leaves are conditions) or a high
level action (if at least one of its leaves is an action). Thanks
to this property, the complexity of an AOD (or a sub-AOD)
can be hidden by representing only its root or a named link
to its root. We use this property to link all generated AODs
under a large OR node and thus regroup the whole action
selection system into a unique AOD.

Figure 7: The AOD resulting from the transformation of the
DD of the Figure 2 (equivalent to the rule base of Figure 1).

Refining Tools

We can further clarify an AOD and reduce its size with the
following tools.

Factorization
From the definition of the successful sub-diagram and of the
different composite nodes, we can infer that:

 when the successful sub-diagram contains an AND
node, it necessarily contains all its children,

 when the successful sub-diagram contains an OR
node, it contains only one of its children,

 when the successful sub-diagram contains an If-
Then-Else node, it contains either its IF child and
its THEN child or ELSE child.

Let N be a node with multiple parents. Let A be the common
ancestor of parents of N. If all possible successful sub-
diagrams coming from A contain N, then we can replace N
by an always true condition and replace A by AND(A,N).

Simplification
After its construction and its factorization, an AOD may
contain unnecessary nodes that can be eliminated (like true
conditions created by factorization), provoking a recursive
simplification of the AOD. As this procedure is intuitive, we
will not detail it.

Creation of high level conditions and actions
Some too large AODs can remain hard to understand and
manipulate. Their hierarchical property can be exploited to
hide the complexity of some sub-diagrams into named links
to those sub-diagrams. We propose a tool which first selects
automatically sub-diagrams that have characteristics making
them good candidates to be replaced by named links, and
secondly let the user validate their replacement and choose
the names of the links. The sub-diagrams proposed to the
user are:

 sub-diagrams created from rules of Figure 6, Figure
4, and Figure 3, because they contain a high
concentration of conditions that are susceptible,
taken together, to reveal a high meaning;

 multi-parented sub-diagrams. As they are accessed
from multiple contexts, they may represent relevant
concepts.

APPLICATION TO A GAME

We applied the method described in this paper to the high
level action selection system of the game Pro Cycling
Manager. In this section, we first present the game and its
original AI, then we show how we applied our method to it.

Pro Cycling Manager And Its AI

Pro Cycling Manager is a management game where the
player supervises a professional cycling team through a
career or a simple race in single or multi-player mode. Each
race can be simulated or played in real time 3D, as shown on
Figure 8. A race brings about 20 teams of 9 riders together,
among which the player’s team. The player controls the
actions (attack, sprint, relay …) of his/her riders as well as
their energy expenditure.

Figure 8: A screenshot of a race in Pro Cycling Manager

Our work focuses on the action selection system of the riders
during a race. It is organized into 4 levels:

 Level 4: Group tactic selection. A group is
composed of riders (up to 3) from the same team on
the basis of a leader and whose goals are those of
the leader. For example, to catch up with a
dangerous opponent, the group tactic could be Take
relays or Attack, with a given effort.

 Level 3: Individual roles allocation. This level is
in charge of giving a role to each member of the
group. For example, if the chosen tactic is Attack,
only the leader will attack. On the contrary, if the
chosen tactic is Take relays, all the group will
participate to the relay except the leader.

 Level 2: Role fulfillment. Each role is controlled
by a Finite State Machine (FSM). For example, the
states of the FSM of the role Take relays are: Enter
the relay queue, Take a relay, Go to the end of the
relay queue.

 Level 1: Dealing with physics. Here are computed
the forces applied on a rider, based on its role, its
energy, its competences and its environmental
conditions (slope percentage, wind speed and
direction, obstacles …).

The player interacts with his/her riders by giving them
individual roles. Levels 1 and 2 are therefore shared by
player’s riders and computer controlled riders.

The transformation method we described in this paper is
applied on the highest and most complex level: the group
tactic selection. As it was not implemented exactly as a rule

base, but rather as conventional procedural programming,
we needed a prior transformation stage that we will not
describe because of its specificity to that game.

Application Of Our Method: Results

The starting rule base contained 427 rules bringing together
4506 conditions on 167 variables.

From A Rule Base To A Decision Diagram Base
From these 427 rules, 50 small thematic rule bases of
different priorities were created by hand. Each small rule
base was automatically transformed into a DD on the basis
of a manually optimized variable ordering. On that occasion,
the total number of conditions dropped down from 4506 to
939 (we count the number of conditions as the number of
edges (1467) minus the number of else edges (528)).

From A Decision Diagram Base To an AOD + Refining
The automatic conversion of the DD base into an AOD
eliminated the 528 else edges but, even after the refining of
this AOD, necessitated 741 composite nodes.

Testing
We integrated the obtained AOD in Pro Cycling Manager
and successfully verified its functional equivalence with the
initial group tactic selection module by comparing their
decisions on a very large number of race situations.

DISCUSSION

The transformation of a rule base into a DD base, when the
division into small rule bases and the variables orderings are
carefully chosen, significantly reduces the redundancy of
conditions shared by multiple rules. Concerning the
conversion of a DD base into an AOD, the diagram size is
slightly increased to provide a hierarchical and modular
structure allowing a large action selection system to remain
easily tunable and expandable.

Our method could be improved by automating the steps that
are currently processed manually, particularly the variable
ordering step which was the most time consuming. This
problem is computationally hard but, for rule bases of
reasonable sizes, an automatic solution could help.

AODs are not the ultimate representation of an action
selection system. At least they are less powerful than
Behavior Trees (BTs). AODs are close to BTs since AND
nodes in AODs correspond to parallels in BTs and OR nodes
correspond to selectors, but BTs can also represent
sequences that endow them with memory and let them

behave like HFSMs. Since the AOD formalism is very close
to the one of BTs, one can create a BT from an AOD by
reorganizing it and adding sequences to it. Conversely, the
automatic factorization and simplification tools we designed
for AODs could be adapted to BTs (more precisely to sub-
BTs that do not contain sequences) that were written by
hand, resulting in more compact behavior definitions.

Our initial AI was hard coded. We used the opportunity of
its transformation to separate its formalism from the game
code. It made on-the-fly modifications possible and gave
also the possibility to create tools to help analyzing and
editing the AI.

CONCLUSION

In order to rewrite and compact a game AI based on if-then
rules into a formalism facilitating its maintenance and its
capacity to grow in size, we proposed a method to semi-
automatically transform a rule base into an And/Or Diagram
(AOD). On a game that continues to evolve over years, our
method allows modernizing an action selection system by
reusing the work of past generations of AI programmers.

In the future, we plan to integrate fuzzy conditions and
composite nodes to allow defining a behavior with a lower
number of nodes, and fuzzy actions to prevent crisp changes
of behavior under small changes of circumstances. We also
plan to develop tools to help the editing process of AODs by
masking irrelevant parts to the user.

REFERENCES

Akers. S. B. 1978. “Binary Decision Diagrams”, in IEEE
Transactions on Computers, C-27(6):509–516.

Bahar R. Iris, Frohm E. A., Gaona C. M., Hachtel G. D., Macii E.,
Pardo A., et Somenzi F. 1993. “Algebraic decision diagrams
and their applications”. In Intl. Conf. Computer-Aided Design,
188-191, IEEE.

Champandard A. 2008. “Getting Started with Decision Making and
Control Systems”. In AI Game Programming Wisdom 4,
Charles River Media Inc., 257-264.

Drechsler R., Sieling D. 2001. “Binary decision diagrams in theory
and practice”. In Int. Journal on Software Tools for Technology
Transfer, 3(2):112-136.

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex
Systems”. In Science of Computer Programming, 8:231-274.

Huang, J., et Darwiche, A. 2004. “Using DPLL for efficient OBDD
construction”. In Proceedings of the Seventh International
Conference on Theory and Applications of Satisfiability
Testing, 127-136.

Tani S., Hamaguchi K., Yajima S., 1993. “The complexity of
optimal variable ordering of a shared binary decision diagram”.
In Proc. 45th ISAAC, Lecture Notes in Computer Science,
Springer, Vol. 762:389-39.

