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ABSTRACT

A game Artificial Intelligence defined by if-then rules can 
become  hard  to  maintain  and  expand.  In  this  paper  we 
present a method to transform in a compact way a rule base 
into an And/Or Diagram, a hierarchical  structure easier  to 
manage over time. Our method is illustrated in a commercial 
cycling simulation video game.

INTRODUCTION

In game Artificial Intelligence (AI), simple if-then rules are 
often  preferred  over  more  powerful  architectures  such  as 
Hierarchical Finite State Machines (HFSMs) (Harel 1987) or 
Behavior Trees (BTs) (Champandard 2008), because they do 
not  require  developing  any  complex  engine  or  editor. 
Thanks to their simplicity, developers can quickly compose 
simple  behaviors  for  game  agents.  However,  their  poor 
maintainability  and  scalability  make  them  inappropriate 
when the complexity  of  these behaviors  exceeds  a certain 
degree. But the growth in complexity is not always easy to 
anticipate, especially for game series, such as sport games, 
which  evolve  in  sequels  in  a  more  and  more  complex 
manner. In such a context, developers are often constrained 
to update their AI by rewriting it  from scratch in a better 
formalism when it becomes too complex, depriving them of 
the possibility  of  re-using the knowledge contained  in the 
original AI.

In this paper,  based on our experience with a commercial 
sport  video  game,  we propose  a method to transform and 
compact semi-automatically a rule base in what we call an 
And/Or  Diagram (AOD),  whose formalism is close to the 
one of a BT. This method is divided into successive steps of 
transformation from a formalism to another:

 the semi-automatic transformation of the rule base 
into a decision diagram base;

 the automatic  conversion  of  the decision diagram 
base into an AOD;

 the  automatic  refining  (factorization  and 
simplification) of the AOD;

In the following sections, we will detail those steps, present 
an application of our method to the Pro Cycling Manager 
game  developed  by  Cyanide  and  discuss  it,  before 
concluding and giving future work directions.

TRANSFORMING A RULE BASE INTO AN AOD

Our starting point is an action selection system defined by a 
rule base where each rule has a premise, a conclusion and a 

priority (see  Figure 1 for a small example). A premise is a 
conjunction  of  conditions  on  variables,  a  conclusion  is  a 
conjunction of discrete actions, whereas priorities define the 
order of rules testing, forbidding the activation of multiple 
rules at the same time.

r1: if V1 = true and V2 < 50 and V3 < 10 then do Action1 
r2: if V1 = true and V2 < 50 and V3 > 20 then do Action2 
r3: if V1 = true and V4 = true then do Action3 
Figure 1: Three if-then rules forming a rule base, ordered by 

decreasing priority. V1, …, V4 are variables.

The successive steps to transform and compact a rule base 
into an AOD are presented in the following subsections.

From A Rule Base To A Decision Diagram Base

The rule  base  we described  is  a  flat  structure  that  cannot 
handle  common  properties  of  rules  without  calling  upon 
redundancy (for example,  in  Figure 1, the condition  V1 = 
true is  repeated  in  each  rule).  This  can  slow  down 
considerably  the  understanding,  the  modification  and  the 
evolution  of  the  AI.  In  this  section,  we  explain  how  we 
reduce this redundancy by representing the rule base into a 
decision diagram base.

A  decision  diagram  (Akers  1978)  is  a  rooted  Directed 
Acyclic Graph (DAG) composed of:

 decision nodes  . A decision node represents a test on 
the value of a variable;

 edges  .  An  edge  coming  from  a  decision  node 
represents a condition on its variable;

 leaves  . A leaf represents a solution to the decision 
diagram problem (for an action selection problem, a 
leaf is an action or a set of actions).

A  decision  diagram  is  executed  from  the  root.  At  each 
decision  node,  the  next  visited  node  is  designated  by  the 
edge whose condition is satisfied, until a leaf is reached.

We propose an algorithm to transform a rule base into what 
we  call  an  Ordered  Multi-Terminal  Algebraic  Decision 
Diagram  (OMTADD)  (designation  deriving  from  Ordered 
Binary Decision Diagrams (OBDDs), Multi-Terminal Binary 
Decision  Diagrams  (MTBDDs)  [Drechsler  and  Sieling, 
2001] and Algebraic Decision Diagram (ADD) [Bahar et al. 
1993]).  An OMTADD is:

 Algebraic  ,  because  we  use  non  binary  variables 
(they can be Boolean, integer,  float or defined by 
enumeration);

 Multi-Terminal  , because we use non binary answers 
(in the leaves);

 Ordered  , because our algorithm needs an order on 
variables.

In the rest of this paper, DD stands for OMTADD for short.



Our algorithm is a modified version of the DPLL procedure 
proposed  by  Huang  and  Darwiche  (Huang  &  Darwiche 
2004).  The  DPLL  procedure  is  originally  designed  to 
transform  a  Conjunctive  Normal  Form  (CNF),  i.e.  a 
conjunction  of  disjunctive  conditions,  into an  OBDD. We 
adapted it to transform a rule base into a DD.

This algorithm requires  an ordering on the variables.  But, 
finding  a  good  ordering  for  many  variables  is  a  hard 
problem. The resulting decision diagram can be huge if this 
ordering  is  not  carefully  chosen.  We  narrow  down  this 
problem by dividing the rule base into smaller  rule bases, 
each one concerning a small enough subgroup of variables. 
It  boils  down  to  do  the  intuitive  operation  of  regrouping 
rules using the same variables, or almost the same variables, 
together.  However,  this  reorganization  is  constrained  to 
respect rules priorities: the resulting rule bases are ordered 
by priority,  each small rule base getting the priority of its 
first rule, and the following property is imposed: let r1 and r2 

be two rules with compatible premises, r1 belonging to the 
rule base R1 and r2 to the rule base R2 (with r1 ≠ r2 and R1 ≠ 
R2).  R1.priority  >  R2.priority  implies  that  r1.priority  > 
r2.priority.

The transformation of each resulting rule base into a DD is 
done separately by the  omtadd algorithm presented below. 
We first give a brief summary and some definitions.

In  this  recursive  algorithm,  variables  are  instantiated 
successively  with  all  their  possible  values.  This  makes 
premises of some rules becoming satisfied, creating decision 
nodes (corresponding to variables instantiations) and leaves 
(corresponding  to  rules  conclusions).  When  several  nodes 
are equivalent, only one is kept. The use of cutsets allows 
anticipating equivalence between nodes, avoiding computing 
them all.

Our  definition  of  a  cutset  is  the  same  as  in  (Huang  & 
Darwiche  2004),  with  “clause”  replaced  by  “rule”:  the  i  th   

cutset of variable order π = v1,…,vn for the rule base {r1,…
rm}, denoted cutseti

R(π) or cutseti for short, is defined as {r
∈R : ∃j ≤ i < k such that rule r mentions variables v j and 
vk in its premise}.

A cutset value is a bit vector, each bit representing the state 
(satisfied  or  simplified)  of  the  premise  of  a  rule  of  this 
cutset. When two ore more configurations are found to have 
the same cutset value, only one of them will be computed, its 
DD cached, and others will simply generate a cache hit and 
have their DD immediately returned.

In a DD, the fail action is the one activated when all the rules 
represented by the DD fail. In that case, the next DD (with a 
lower priority) is evaluated.

Algorithm  omtadd(Rules  R, int  i) : return the root node of 
the DD corresponding to the rule base  R,  whose rules are 
ordered by priority, according to a fixed order on variables. i 
is the current variable index.

if at least the premise of one rule is true then 
let r1 be the rule of highest priority among rules with 
a true premise;
if there is no rule r2 with simplified premise such that 
r2.priority >  r1.priority and  r2.actions ≠  r1.actions 
then

return r1.actions;
if all variables are instantiated then 

return the fail action;
if (node_already_computed = cachei-1[value(cutseti-1)]) ≠ 
nul then 

return node_already_computed;
result = create_node (R, i);
cachei-1[value(cutseti-1)] = result;
return result;

Function  create_node(Rules  R,  int  i) :  create  a  node,  or 
return an already existing node, where the variable of index i 
is tested.

let N be an empty set of nodes;
for each possible value val of the variable vi, do 

N.insert(omtadd(R|vi = val, i+1));
if all the nodes in N are equals then 

return the first one;
else

let  Node[i] be  the  set  of  nodes  representing  the 
variable of index i;
for each node n of Node [i], do

if the children of n are exactly the nodes in N then 
return n;

result = Node(i, N);
Node[i].insert(result);
return result;

Function  Node(i,  N) :  create  a  node  having  i as  variable 
index and the nodes contained in N as children.

The choice  of  the  variable  order  in  a  BDD is  hard  [Tani 
1993]. This is especially true for an MTADD, which is more 
complex than a BDD. Therefore,  we do not automate that 
part: we proceed manually, by trial and error, to the choice 
of the variable order of each rule base, until we obtain a DD 
with a low enough degree of redundancy.

Figure 2 shows a DD resulting from the transformation of 
the rule base extracted from the rule base of  Figure 1. We 
can see that the redundancy of conditions V1 = true and V2 
< 50 is avoided.

Figure 2: The DD resulting from the transformation of the 
rule base in Figure 1, according to the following variable 

order: V1, V2, V3, V4. The Fail action and edges that lead to 
it are not represented.

From A Decision Diagram Base To an AOD



DDs can represent disjunctions (see  else edges in  Figure 1 
and, for another type of disjunctions, left side of  Figure 3). 
But  when these disjunctions involve  numerous conditions, 
some nodes may have to be accessed from many edges. This 
contributes to slow down the editing of DDs (e.g. in Figure
3,  replacing  the  node  N  by  a  node  N’  would  require 
reconnecting to N’ all edges leading to N). In this section, 
we show how we convert DDs into AODs. AODs represent 
disjunctions  by  OR  nodes  which,  combined  with  AND 
nodes, make the AI modular and easier to reconfigure. The 
connection of all AODs into a single AOD is also explained.

An AOD is a rooted DAG where nodes can be either leaves 
(conditions,  actions  or  a  named  link  to  other  AODs)  or 
composite  nodes.  There  are  different  types  of  composite 
nodes:

 AND nodes  . An AND node succeeds only if all its 
children succeed;

 OR nodes  . An OR node succeeds if at least one of 
its  children  succeeds.  Its  children  are  ordered  by 
priority;

 If-Then-Else nodes  . An If-Then-Else node succeeds 
if both its If and Then children succeed or if its If 
child  fails  and  its  Else  child  succeeds.  An 
equivalent  of  an  If-Then-Else  can  be  constructed 
with one OR node and two AND nodes.

The execution of an AOD starts from the root in a depth-first 
search.  When a node fails,  we backtrack to its parent  and 
continue its execution (e.g. an OR node will execute its next 
child whereas an AND node will fail). Leaves representing 
actions always succeed.

We call successful sub-diagram the result of the execution of 
an AOD. It is composed of nodes that succeeded and that 
have  a parent  (except  for  the root)  belonging  to  this sub-
diagram.  Actions  contained  in  the  successful  sub-diagram 
form together the final decision.

The conversion of a DD into an AOD is done by searching 
recursively for patterns upon which we apply transformation 
rules  in  a  priority  order.  These  rules  are  explained  in  the 
following figures (from  Figure 3 to Figure 6) presented in 
decreasing priority order. In these figures, nodes N, N1, N2 
and N3 are not necessarily leaves, and nodes V and V1 are 
not necessarily roots.

Figure 3: Conversion of a DD with disjunctions into an 
AOD.

Figure 4: Conversion of a DD with another type of 
disjunctions into an AOD.

Figure 5: The general case, from the preceding rule, when 
the last decision node (here V3) has more than two children

Figure 6: Conversion of a conjunction of conditions leading 
to the node N into an AND node responsible for the 

execution of these conditions and N.

AODs  benefit  from  their  hierarchical  organization  (see 
Figure 7 for an example):  a sub-diagram can be seen as a 
high level condition (if all its leaves are conditions) or a high 
level action (if at least one of its leaves is an action). Thanks 
to this property, the complexity of an AOD (or a sub-AOD) 
can be hidden by representing only its root or a named link 
to its root. We use this property to link all generated AODs 
under a large OR node and thus regroup the whole action 
selection system into a unique AOD.



Figure 7: The AOD resulting from the transformation of the 
DD of the Figure 2 (equivalent to the rule base of Figure 1).

Refining Tools

We can further clarify an AOD and reduce its size with the 
following tools.

Factorization
From the definition of the successful sub-diagram and of the 
different composite nodes, we can infer that: 

 when the successful sub-diagram contains an AND 
node, it necessarily contains all its children,

 when  the  successful  sub-diagram contains  an  OR 
node, it contains only one of its children,

 when  the  successful  sub-diagram  contains  an  If-
Then-Else node, it contains either its IF child and 
its THEN child or ELSE child.

Let N be a node with multiple parents. Let A be the common 
ancestor  of  parents  of  N.  If  all  possible  successful  sub-
diagrams coming from A contain N, then we can replace N 
by an always true condition and replace A by AND(A,N).

Simplification
After  its  construction  and  its  factorization,  an  AOD  may 
contain unnecessary nodes that can be eliminated (like true 
conditions created by factorization),  provoking a recursive 
simplification of the AOD. As this procedure is intuitive, we 
will not detail it.

Creation of high level conditions and actions
Some too large AODs can remain hard to understand and 
manipulate. Their hierarchical property can be exploited to 
hide the complexity of some sub-diagrams into named links 
to those sub-diagrams. We propose a tool which first selects 
automatically sub-diagrams that have characteristics making 
them good candidates  to be replaced by named links,  and 
secondly let the user validate their replacement and choose 
the names of the links.  The sub-diagrams proposed to the 
user are:

 sub-diagrams created from rules of Figure 6, Figure
4,  and  Figure  3,  because  they  contain  a  high 
concentration  of  conditions  that  are  susceptible, 
taken together, to reveal a high meaning;

 multi-parented sub-diagrams.  As they are accessed 
from multiple contexts, they may represent relevant 
concepts.

APPLICATION TO A GAME

We applied the method described in this paper to the high 
level  action  selection  system  of  the  game  Pro  Cycling 
Manager. In this section, we first present the game and its 
original AI, then we show how we applied our method to it.

Pro Cycling Manager And Its AI

Pro  Cycling  Manager  is  a  management  game  where  the 
player  supervises  a  professional  cycling  team  through  a 
career or a simple race in single or multi-player mode. Each 
race can be simulated or played in real time 3D, as shown on 
Figure 8. A race brings about 20 teams of 9 riders together, 
among  which  the  player’s  team.  The  player  controls  the 
actions (attack, sprint, relay …) of his/her riders as well as 
their energy expenditure.

Figure 8: A screenshot of a race in Pro Cycling Manager

Our work focuses on the action selection system of the riders 
during a race. It is organized into 4 levels:

 Level  4:  Group  tactic  selection.  A  group  is 
composed of riders (up to 3) from the same team on 
the basis of a leader and whose goals are those of 
the  leader.  For  example,  to  catch  up  with  a 
dangerous opponent, the group tactic could be Take 
relays or Attack, with a given effort.

 Level 3: Individual roles allocation. This level is 
in charge of giving a role to each member of the 
group. For example, if the chosen tactic is  Attack, 
only the leader will attack. On the contrary, if the 
chosen  tactic  is  Take  relays,  all  the  group  will 
participate to the relay except the leader.

 Level 2: Role fulfillment. Each role is controlled 
by a Finite State Machine (FSM). For example, the 
states of the FSM of the role Take relays are: Enter 
the relay queue, Take a relay, Go to the end of the  
relay queue.

 Level 1: Dealing with physics. Here are computed 
the forces applied on a rider, based on its role, its 
energy,  its  competences  and  its  environmental 
conditions  (slope  percentage,  wind  speed  and 
direction, obstacles …).

The  player  interacts  with  his/her  riders  by  giving  them 
individual  roles.  Levels  1  and  2  are  therefore  shared  by 
player’s riders and computer controlled riders.

The  transformation  method  we  described  in  this  paper  is 
applied on the highest  and most complex level:  the group 
tactic selection. As it was not implemented exactly as a rule 



base,  but  rather  as  conventional  procedural  programming, 
we  needed  a  prior  transformation  stage  that  we  will  not 
describe because of its specificity to that game.

Application Of Our Method: Results

The starting rule base contained 427 rules bringing together 
4506 conditions on 167 variables.

From A Rule Base To A Decision Diagram Base
From  these  427  rules,  50  small  thematic  rule  bases  of 
different  priorities  were  created  by  hand.  Each  small  rule 
base was automatically transformed into a DD on the basis 
of a manually optimized variable ordering. On that occasion, 
the total number of conditions dropped down from 4506 to 
939 (we count the number of conditions as the number of 
edges (1467) minus the number of else edges (528)).

From A Decision Diagram Base To an AOD + Refining
The  automatic  conversion  of  the  DD  base  into  an  AOD 
eliminated the 528 else edges but, even after the refining of 
this AOD, necessitated 741 composite nodes.

Testing
We integrated the obtained AOD in Pro Cycling Manager 
and successfully verified its functional equivalence with the 
initial  group  tactic  selection  module  by  comparing  their 
decisions on a very large number of race situations.

DISCUSSION

The transformation of a rule base into a DD base, when the 
division into small rule bases and the variables orderings are 
carefully  chosen,  significantly  reduces  the  redundancy  of 
conditions  shared  by  multiple  rules.  Concerning  the 
conversion of a DD base into an AOD, the diagram size is 
slightly  increased  to  provide  a  hierarchical  and  modular 
structure allowing a large action selection system to remain 
easily tunable and expandable.

Our method could be improved by automating the steps that 
are  currently  processed  manually,  particularly  the  variable 
ordering  step  which  was  the  most  time  consuming.  This 
problem  is  computationally  hard  but,  for  rule  bases  of 
reasonable sizes, an automatic solution could help.

AODs  are  not  the  ultimate  representation  of  an  action 
selection  system.  At  least  they  are  less  powerful  than 
Behavior Trees (BTs). AODs are close to BTs since AND 
nodes in AODs correspond to parallels in BTs and OR nodes 
correspond  to  selectors,  but  BTs  can  also  represent 
sequences  that  endow  them  with  memory  and  let  them 

behave like HFSMs. Since the AOD formalism is very close 
to the one of BTs, one can create a BT from an AOD by 
reorganizing it and adding sequences to it. Conversely, the 
automatic factorization and simplification tools we designed 
for AODs could be adapted to BTs (more precisely to sub-
BTs  that  do  not  contain  sequences)  that  were  written  by 
hand, resulting in more compact behavior definitions.

Our initial AI was hard coded. We used the opportunity of 
its transformation to separate its formalism from the game 
code.  It  made  on-the-fly  modifications  possible  and  gave 
also  the  possibility  to  create  tools  to  help  analyzing  and 
editing the AI.

CONCLUSION

In order to rewrite and compact a game AI based on if-then 
rules  into  a  formalism facilitating  its  maintenance  and  its 
capacity  to  grow in size,  we proposed  a method to semi-
automatically transform a rule base into an And/Or Diagram 
(AOD). On a game that continues to evolve over years, our 
method allows modernizing  an action selection  system by 
reusing the work of past generations of AI programmers.

In  the  future,  we  plan  to  integrate  fuzzy  conditions  and 
composite nodes to allow defining a behavior with a lower 
number of nodes, and fuzzy actions to prevent crisp changes 
of behavior under small changes of circumstances. We also 
plan to develop tools to help the editing process of AODs by 
masking irrelevant parts to the user.
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