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Abstract
Factored Reinforcement Learning (FRL) is a
method to solve Factored Markov Decision Pro-
cesses when the structure of the transition and re-
ward functions of the problem must be learned.
In this paper, we present TeXDYNA, an algo-
rithm that combines the abstraction techniques
of Semi-Markov Decision Processes to perform
the automatic hierarchical decomposition of the
problem with an FRL method. The algorithm is
evaluated on the taxi problem.

1. Introduction
The Markov Decision Process (MDP) framework is a stan-
dard framework for learning and planning under uncer-
tainty. However, due to the ”curse of dimensionality”,
standard exact algorithms cannot address large scale prob-
lems in this framework mostly because they have to enu-
merate all states (Sutton & Barto, 1998). The Factored
MDPs (FMDPs) framework improves over MDPs by repre-
senting their structure compactly (Boutilier et al., 1995).
In this approach, a state is implicitly described by an as-
signment of values to a collection of state variables. A
Dynamic Bayesian Network (DBN) representation (Dean
& Kanazawa, 1989) exploits the dependencies between the
state variables to avoid the explicit state space enumeration.

Another way to reduce the size of a problem is the use
of Semi-MDPs (SMDPs) where the number of time steps
between two decisions is a random variable. The SMDP
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framework is the basis for hierarchical reinforcement learn-
ing (HRL) algorithms as it decomposes the original task into
smaller pieces (subtasks) that are easier to solve individu-
ally (Barto & Mahadevan, 2003).

Generally, the methods used to solve FMDPs and SMDPs
assume that the structure of the problem is known in ad-
vance. But, in practice, a perfect knowledge of the transi-
tion and reward functions of the problem is seldom avail-
able. The SDYNA framework (Degris et al., 2006b) is in-
tended to solve such FMDPs while learning the structure.
In other respects, algorithms like HEXQ (Hengst, 2002),
VISA (Jonsson & Barto, 2006) or the approach recently
proposed by (Vigorito & Barto, 2008b) are designed to dis-
cover the hierarchical structure of SMDPs. In this paper, we
propose TeXDYNA, an algorithm that combines the benefits
of HEXQ and SDYNA.

The paper is organized as follows. In sections 2 and 3, we
present FMDPs, SMDPs and some standard algorithms in
the domain. In section 4, we describe TeXDYNA. In sec-
tion 5, we compare our results within three contexts: learn-
ing without hierarchical structure, learning with a given hi-
erarchical structure and simultaneously learning the hierar-
chical structure and the policy. This comparison is based
on the taxi problem. Finally, in section 6, we discuss the
benefits of the proposed approach and conclude on the pos-
sibilities to extend this work to more complex problems.

2. Factored Reinforcement Learning
Factored Reinforcement Learning (FRL) is a model-based
reinforcement learning approach combining Structured
Dynamic Programming (SDP) and model learning.
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2.1. Structured Dynamic Programming

In the FMDP framework, the state space of the problem
is represented as a collection of random variables X =
{X1, . . . , Xn}. A state is then defined by a vector x =
(x1, . . . , xn) with ∀i, xi ∈ Dom(Xi). FMDPs exploit the
structure of the problem to represent large MDPs compactly.
For each action a, the model of transitions is defined by a
separate Dynamic Bayesian Network (DBN) model (Dean
& Kanazawa, 1989). The model Ga is a two-layer directed
acyclic graph whose nodes are {X1, . . . , Xn, X

′
1, . . . , X

′
n}

with Xi a variable at time t and X ′
i the same variable at

time t + 1. The parents of X ′
i are noted Parentsa(X ′

i). The
model of transitions is quantified by Conditional Probabil-
ity Distributions (CPDs), noted P a(X ′

i|Parentsa(X ′
i)), asso-

ciated to each node X ′
i ∈ Ga. SDP algorithms such as SVI

(Structured value Iteration) are exact planning algorithms
that make profit of this structured representation (Boutilier
et al., 2000).

2.2. SDYNA and SPITI

Reinforcement Learning in FMDPs is generally about the
case where the structure of the DBNs is given, but the pa-
rameters of the CPDs are learned from experience. By con-
trast, we call Factored Reinforcement Learning (FRL) the
case where the structure of the DBNs itself is learned.

An implementation of FRL is expressed in SDYNA, a
model-based reinforcement learning framework (Degris
et al., 2006a; Degris et al., 2006b), inspired from the DYNA
architecture (Sutton, 1991). In SDYNA, the models of tran-
sition and reward functions are learned from experience un-
der a compact form. The inner loop of SDYNA is decom-
posed into three phases: (i) Acting: choosing an action ac-
cording to the current policy, including some exploration;
(ii) Learning: updating the model of the transition and re-
ward functions of the FMDP from 〈X, a,X ′, R〉 observa-
tions; (iii) Planning: updating the value function Tree(V )
and policy Tree(π) using sweeps of SDP algorithms.

SPITI is a particular instance of SDYNA using ε-greedy as
exploration method, the Incremental Tree Induction (ITI)
algorithm (Utgoff, 1989) to learn the model of transitions
and reward functions as a collection of decision trees, and
an incremental version of SVI as planning method. An al-
gorithmic description is given in (Degris et al., 2006b).

3. Hierarchical Reinforcement Learning
The SMDP formalism takes advantage of hierarchical rep-
resentations, using HRL methods to decompose the original
task into smaller tasks by introducing temporally-extended
actions that require a variable number of time steps until
the system reaches the next state. The availability of these
temporally-extended activities can exponentially improve

the performance of the agent. It also enables learning or
planning on multiple levels of temporal abstraction.

Among various SMDP formalisms, we use the options
framework (Sutton et al., 1999). Options are a general-
ization of primitive actions including temporally extended
courses of actions. Even if options are added to the primi-
tive actions set, resulting in a bigger core MDP representa-
tion, options provide a decomposition of the original task
into subtasks, leading to a simplification of the global prob-
lem. Options can also facilitate the transfer of learned local
policies to related tasks.

An option is a tuple 〈I, π, β〉, where I ⊆ S is an initiation
set, that is a subset of states in which it is possible to exe-
cute o, π : S × O → [0, 1] is a policy executed in o, and
β : S → [0, 1] is a termination condition function, that is
the probability of terminating the option in each state. A
primitive action a ∈ A of the original MDP is also an op-
tion, called one-step option, with I = ∅ and β(s) = 1. If
the option is executed, then sub-options are selected ac-
cording to π until the option terminates in state s′ with
probability β(s′). When the option terminates, the agent
can select another option. Therefore the SMDP model is
represented by a hierarchy of options, in which options on
one level select their actions among lower level options.

In this perspective, an option o can be viewed as a sub-
task given by the option SMDPMo = 〈So, Oo,Ψ, Ro, To〉
where So ∈ S is the option state set, Oo is the set of sub-
options that o selects from, Ψ is the set of admissible state-
option pairs, i.e. a set of pairs including states determined
by the initiation sets of options in Oo, Ro is the option re-
ward function and To is a transition probability function.

Well known algorithms such as HEXQ (Hengst, 2002) and
VISA (Jonsson & Barto, 2006) call upon the option frame-
work to perform state and temporal abstractions. Similarly
to the work presented here, an approach coupling the VISA
algorithm with incremental learning of the model of transi-
tions was proposed recently in (Vigorito & Barto, 2008a).
As will become clear hereafter, our work is more based
on HEXQ than on VISA, though it builds upon some ideas
coming from VISA.

4. TeXDYNA: hierarchical decomposition in
FRL

TeXDYNA1 hierarchically decomposes an FMDP by auto-
matically splitting it into a set of options. Meanwhile, the
local policy of each option is incrementally improved by
SPITI. The central contribution comes from the fact that
the discovery of options and the learning of the model of
the FMDP are simultaneous.

1for Temporally Extended SDYNA
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The global planning algorithm, described in Algorithm 1,
is decomposed into two phases: (1) recursive call of SPITI
for model learning, planning and acting over options and
(2) discovery of the options and their hierarchy. These two
phases are presented hereafter.

Algorithm 1: TeXDYNA
input: FMDP F , options hierarchyM
for each time step t

1.a if no option is running then
choose option o fromM accessible in the current
state s according to the current policy π

1.b if terminal condition of o is satisfied then
(i) execute exit action a; observe next state s′ and
immediate reward r
(ii) update FMDP F with (s,a,s′,r)
(iii) update local policy πo

1.c else
choose sub-option i according to local policy πo

if sub-option i is primitive action then
(i) execute i; observe s′ and r
(ii) update FMDP F with (s,i,s′,r)
(iii) update local policy πo

else
call TeXDYNA over sub-option i

2.a update exits set E
2.b update options hierarchyM

4.1. FRL over options

To achieve simultaneous SMDP structure learning, FMDP
structure learning and policy computation, the algorithm
executes options recursively by going down the options hi-
erarchy up to primitive actions that can be executed by the
agent in its environment. In practice, high level options
often form a partition of the state space, thus the option se-
lection procedure returns the only admissible option. Note
that when choosing options, the preference is given to op-
tions with a higher level of abstraction. The root node of
the option hierarchy represents the overall MDP. The reso-
lution of each sub-MDP, represented by an option, follows
the three phases of the SDYNA framework.

• Acting (choosing a option o and eventually a sub-
option to execute). The first option o is chosen accord-
ing to the global policy while its initiation set contains
the current state s. The sub-options are selected ac-
cording to the internal policy πo of the option o aug-
mented with an ε-greedy exploration policy.

• Learning the transition function of the overall FMDP
(updating the FMDP model) using ITI.

• Planning (updating the local policy πo) using an incre-
mental version of SVI.

Moreover, to propagate the external rewards to the local
policies of options, when a high level option is discovered,
an additional reward, named ”internal reward” ri (by con-
trast with the external reward received from the environ-
ment) is assigned to its exit action. We set ri = rmax

2 ,
where rmax is the maximal immediate external reward that
the agent can get. This heuristics is inspired by the ”salient
event” heuristics introduced in (Singh et al., 2005).

Finally, in part 2 of the algorithm, exits set E and options
hierarchyM are learned according to the procedures pre-
sented in the next section.

4.2. Discovery of the options and their hierarchy

Exits discovery Our approach of options discovery is sim-
ilar to the one used in HEXQ: we define E - a set of ”ex-
its” corresponding to the changes of values of the variables
linked to the reward function. Then we associate to each
exit a context corresponding to the set of states where this
change of value can occur. Finally, we introduce an option
for each exit.

However, unlike HEXQ, where exits are state-action pairs,
we define exits as a tuple 〈v, c, a, vch〉, where v is the vari-
able whose value is changed by this exit, c = {x1, ..., xn}
is the context, that is the set of constraints (i.e. assign-
ment of values to a subset of state variables) that makes
this exit available, a is the exit action that makes the value
of v change at s′ and vch is a variable change, i.e. a pair of
values 〈x, x′〉 where x is the value before a is executed and
x′ the value after a is executed2. In this representation, the
primitive actions have an empty context.

Algorithm 2 describes the procedure for discovering exits.
To ensure the relevance of discovered exits, they are up-
dated every time the model of transitions changes, taking
advantage of its tree structure. Besides the fact that most
of the exits would be discovered earlier than the complete
structure of the problem, some exits might be incomplete
or incorrect. To handle this issue, the algorithm checks if
the E already contains an exit defined by the same action
and variable, but with a different context definition. If so,
it updates it (line 10 in Algorithm 2).

Options discovery The options hierarchyM is built upon
the set of exits discovered at the previous step. Each option
is introduced using the following procedure:

1. Create (or update) an option o for each exit;

2. Initialize local policy πo;

3. Add sub-options;

4. Compute Initialization set Io.

2In the stochastic case, the variable change is a probability
distribution over vch for each exit.
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Algorithm 2: Update Exits
init : exits set E = ∅
input: FMDP F [Tree(P (x′|x, a))]

1 forall transition tree Tree(P (x′|x, a)) ∈ F do
2 forall leaf l of the Tree(P (x′|x, a))) do
3 if action a modifies the value of the variable x in

leaf l then
4 if if E does not contain a definition of exit e

corresponding to variable x and action a
then

5 introduce new exit e : 〈v, c, a, vch〉 with :
6 • variable v ← x
7 • context c← variables of the branch

that leads to the leaf l
8 • action a← current action a
9 • variable change vch ← 〈value in the

branch, value in the leaf〉
10 else if E contains a partial definition of e

then
11 update e with new information

The sub-options are added in the following way: for each
variable in the context of the option, if E contains an exit
that modifies the value of this variable, a sub-option corre-
sponding to this exit is added. Note that, when computing
the context of an exit, the exit variables are excluded from
the context to avoid cross-dependencies between options.

The initiation set Io of option o is an union of its own exit
context and all the exit contexts of its sub-options. If a sub-
option is a primitive action, its exit variable is added to Io
with all possible values. That way, Io contains the initiation
sets Ii of each sub-option i. By convention, a sub-option
with an empty initiation set is admissible everywhere. This
is particularly true for primitive actions. Therefore, all the
values of the corresponding exit variables of these options
are accepted. Thus, Io contains all the states from which
the exit of the option is reachable. This property of di-
rect reachability is ensured by the fact that the exit context
copies the constraints of the corresponding branch in the
transition tree.

An option terminates by executing the exit action a as soon
as it reaches the context c of its associated exit e or as soon
as it can no longer reach c. More precisely, an option o can
no longer reach the exit as soon as the state is not listed in
Io anymore. The probability of terminating an option o is
β(s) = 1 for states s consistent with the context c and for
states s 6∈ Io. In all other cases, β(s) = 0.

The structure of Mo evolves during the learning process
according to the structure of the model of transitions, which
can be erroneous in the first stages of learning. That may
result in the discovery of inaccurate options. The quality
of an option is related to the number of times this option

has been updated. In fact, as the model of the transition
function stabilizes, the exits corresponding to inaccurate
dependencies are not discovered anymore. Therefore, the
options introduced for these exits are not updated either.
Thus one can discard options relying on a criterion based
on the number of times it is updated. The exact process is
the following. At the creation of a new option, its number
of updates is initialized at the average number of updates
of all options at the same level of the hierarchy. Then, re-
moval is based on confidence intervals on these numbers
of updates: the statistical confidence intervals are calcu-
lated over the qualities of neighboring options in the same
level of hierarchy. The options whose number of updates
is inferior to the average of more than 60 % are considered
irrelevant and removed.

An example of hierarchy of options obtained on the taxi
problem is given in figure 2.

5. Experiments
The algorithms are coded in C# and run on Intel Core2Duo
1.80GHz processor with 2Go RAM. All results presented
below are averaged over 20 runs where each run performs
100 episodes limited to 300 steps. The ε-greedy explo-
ration method uses ε = 0.1. The internal reward used to
learn the structure of options is 10.

5.1. The taxi problem

Figure 1. The taxi problem

The taxi problem presented in figure 1 was first proposed in
(Dietterich, 1998). A taxi is in a 5-by-5 grid world. There
are four special locations, named R, G, Y and B. The taxi
problem is episodic, there are 800 possible states. In each
episode, the taxi starts in a randomly-chosen state. There is
a passenger at one of the four special locations (chosen ran-
domly), and that passenger wishes to be transported to one
of the three other locations (also chosen randomly). The
taxi must go to the passenger’s location, pick her up, go to
the destination location, and drop her off there. The episode
ends when the passenger is at her destination location or
when a predefined number of steps has been reached. At
each time step, the taxi can execute one possible action out
of six: Move the taxi one square North, South, East, or
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Figure 2. Example of options discovered in the taxi problem. The option PickUp changes the value of Passenger from No (not in the
taxi) to Yes (in the taxi). Its exit context contains 2 variables: Taxi Location and Passenger Location. It has 4 sub-options.

West, PickUp or PutDown the passenger. In a stochas-
tic version, instead of moving in the selected direction, a
Move action moves in a random direction with probabil-
ity 0.2. There is a penalty of −1 for each action and an
additional reward of 20 for successfully dropping off the
passenger. There is a penalty of −10 if the taxi attempts to
execute the PutDown or PickUp actions illegally.

5.2. Results

Figure 3. Convergence over episodes on stochastic taxi problem.

Figure 3 shows the performance in number of time steps
required to complete one episode of the stochastic version
of the taxi problem. The curves are smoothed by comput-
ing the moving average weighted over ten neighboring val-
ues. The results below are given for SPITI, for a simpli-
fied version of TeXDYNA where options are given and for
TeXDYNA where options are learned. Table 1 recaps the
average time in seconds per step within this three experi-
mental contexts.

TeXDYNA clearly outperforms SPITI in computation time
and the number of learning episodes needed to converge but
also in memory requirements. It needs about 40 episodes to
converge when options are given, almost 100 episodes with

primitives actions only and 60 episodes when options are
learned. As expected, this result is intermediate between
the one with given options and the one without options.

Table 1. Performance on the stochastic taxi problem.

Time/step(sec)

SPITI 1.1 ± 0.4
given options TeXDYNA 0.09 ± 0.03
learned options TeXDYNA 0.24 ± 0.08

As to the size on the value functions, SPITI builds the
complete tree representing the 800 states of the problem,
whereas TeXDYNA operates with 8 options each of which
only considers 25 states. Thus TeXDYNA requires less time
to perform one step since it works on a smaller representa-
tion. Even considering the options representing the prim-
itives options, the hierarchy of options provides a simpli-
fication of the global structure. Moreover simultaneously
discovering and refining options while learning the FMDP
structure speeds up the global process since it builds most
of the partial policies before the model of transitions is
completely learned.

With respect to results found in the literature, our model
performs better than HEXQ, which needs about 160
episodes to converge and than MAXQ-Q (Dietterich, 1998),
which needs about 115 episodes. Furthermore, both
MAXQ-Q and HEXQ converge slower than SPITI. That can
be explained by the fact that the former does not explic-
itly use the factored structure of the problem and the lat-
ter spends a significant number of episodes evaluating the
order of the variables before building the hierarchy. A de-
tailed comparison with the approach described in (Vigorito
& Barto, 2008a) remains to be performed.
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6. Discussion and conclusion
We have presented the TeXDYNA algorithm combining in-
cremental hierarchical decomposition with the FRL frame-
work. The global architecture presented in section 4.1 ap-
pears similar to a Task option of the VISA framework (Jon-
sson & Barto, 2006). Nevertheless TeXDYNA builds an op-
tions hierarchy online and directly from the transition trees
taking advantage of their structure, while VISA constructs
a variable influence graph from the given DBNs and then
builds transition graphs and reachability trees to determine
the initiation sets of the options.

Although we have shown on the taxi problem that our ap-
proach performs better than reference algorithms, there are
still many opportunities for improvement. First, we will
make profit of the learning method used in SPITI to learn
only a local model for each option. As a result, the mod-
els will be smaller and, therefore, easier to learn. Second,
our current results are limited to the building of a two level
hierarchy, mainly because we discovered in the taxi prob-
lem that relaxing this constraint may result in the discovery
of options that are harder to solve than the global task. To
solve this problem we are focusing on two points. First, we
want to emphasize the reuse of options as sub-tasks in dif-
ferent contexts. Second, we are working on incremental re-
organization of the options hierarchy. Furthermore, several
heuristics used in (Vigorito & Barto, 2008a) may be help-
ful, such as waiting for an option to be “mature enough”
before introducing it in the hierarchy or using a measure of
entropy on the leaves of transition trees instead of number-
ing the times one option has been updated.

Since the taxi problem is limited as to hierarchy levels
that can be built, we are currently working on applying
TeXDYNA to the LightBox problem proposed in (Vigorito
& Barto, 2008a), opening the possibility to a detailed com-
parison. Finally, we intend to apply our approach to more
complex industrial simulation problems where building a
greater number of hierarchy levels will help.
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