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Abstract— In this paper we design two controllers: a sliding 
mode controller and a new designed adaptive controller for an 
under actuated process with important dry friction. The two 
controllers are compared. Simulations and experiments are 
performed to evaluate the efficiency of the designed controllers. 

I. INTRODUCTION 
Many kinds of mechanical systems used in the 

industrial world are difficult to control because of the non 
linear model or because of the presence of the dry friction. 
Many friction models [1, 7] try to represent the 
complexity of physic phenomena. However, friction is 
still one of the great unknowns in mechanical systems. 
Besides, dry friction model is not linear [1, 2] and control 
of such system is quite difficult. In this work, two 
controllers are designed. First a sliding mode controller 
with varying parameter is presented. In this controller, dry 
friction model is not needed. Second, a multi loop 
adaptive controller using dry friction model is developed. 
Both controllers are simulated, implemented and 
compared. 

A test bed (called MACHA) was build to analyze and to 
test several controllers for such a mechanical system. It 
consists of a cart, which is moving by the gravity on a 
guide rail along a sloping beam. The slope of this beam is 
controlled by two brushless motors with their own servo 
drivers (Parvex Inc.), which drive a belt mechanism 
mounted on the right hand side of the system. Here this 
system is configured with one input and one output, but 
the important phenomenon is the dry friction of the cart 
because the slope of the beam is very weak. 
This paper is organized as follows.  

In the second part, the plant is described and the 
dynamical model is given. In the third part, a non-linear 
sliding mode controller is designed, following the method 
presented in [4]. In the fourth part, an adaptive controller 
designed for two outputs, following the theory of [4]. A 
new controller is designed and is brought into application. 
In the fifth part simulations are presented and in the sixth 
part, experimental results are obtained by applying these 
methods to the actual process. In the conclusion, the 
differences between two controllers are observed. 

II. DYNAMICAL MODEL 
A non-linear dynamic model of the 2-link machine (see 

fig. 1) is established using notations of fig. 2. The linear 
position of the cart  on the beam is the underactuated 
joint and the angular position 

)t(x
)t(θ  of the beam is the 

actuated joint as it is shown in figure 2 where plan X0, Y0 
is vertical. Here the bell elasticity is neglected and the 

motor is controlled thanks to torque reference so that the 
input is proportional to F2. Two magnetostrictive sensors 
are used to give cart position and B position, thus beam 
slope )t(θ  is known. 

 
Figure 1.   Process MACHA 

 
Figure 2.  Notations 

TABLE 1. Some values 
Description  Value 

Distance between the cart centre 
of mass G5 and the beam. 

h 0.10 m 

Distance between A and B. d 1.44 m 
Acceleration of gravity. g 9.81m/s² 

Overall length of the tilted beam. L 2.20 m 
Distance between point A and the 

beam centre of mass: G3. 
L1 0.72 m 

Mass of the beam. M3 18.00 kg 
Mass of the cart. M5 2.86 kg 

Inertia of the beam. J 29.04 kg.m² 

B  
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Dynamical model of this system is obtained using 
Lagrange equations or bond graph method [11]. This 
model is written in joint space as: 
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Gravitational torques vector is given by: 
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Here, the vector degree of freedom is: 
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In this plant, the input vector is: ( T
au τ= 0 ) , with F2 

the force applied by the motor and: θ⋅⋅=τ cosFda 2 .  

Dry friction forces are noted )q(F & . Here we only 
consider friction in joint A and friction between the cart 
and the beam. So we have:  
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Many dry friction models have been already developed; 
some models are static such as classical models, the 
Karnopp model [6], the Armstrong’s model [7] etc. in 
these models, the friction is only a function of velocity. 
Some are dynamic models such as the Dahl model [8] or 
the LuGre model [9]. In these models, the friction is not 
only function of velocity but also depends on the 
acceleration. In our case, beam velocity and cart velocity 
are very small, so we use the following common classical 
model [10] to represent dry friction force: 

uf)usgn(e)ff()usgn(f)u(F v
u

cScdf
SC

&&&&
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fc,  fs,  fv  and Cs are four positive constants to define for 
degree of freedom, and stand for the sign of the 
velocity of  fc is called coulomb coefficient, fs is the 
stiction coefficient and fv is the viscous coefficient. 
Numerical values of these coefficients have been 
identified using genetic algorithms [5]. In part IV this 
model is written in the form: 
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And: T
vcs )f,f,f(P =  is a vector collecting dry 

friction parameters. 

III. DESIGN OF SLIDING MODE CONTROLLER 
The goal of the controller is to move the cart from one 

position to another position, trying to reduce static error. 
Physical limits of the variables have to be taken into 
account. To design the sliding mode controller dry friction 
is neglected so only viscous friction is considered. Thus, 
friction matrix becomes: 
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Where: , , are positive, constant and represent 
viscous friction. Equation (1) can be partitioned as: 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

aaF
pFx

qD τθ

0
)( &&

&& . (10) 

Where: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅+⋅⋅⋅+⋅−⋅⋅+⋅⋅⋅
⋅+⋅⋅+⋅−

=

⋅++⋅=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

θθθθθ
θθ

&&&

&&

&&&

bv

cv

fcLgMshcxgMxxM
xfsgMM

qFqgqqqC
aF
pF

_1355

_5
2

5

2

)(),(

 (11) 

Developing equation (10) one can obtain for each 
degree of freedom: 
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In order to manage the cart position, the sliding mode 
controller has to control its acceleration . 
Consequently, the term  must be isolated. 
Substituting (12) in (13) we obtain: 
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The sliding mode controller is defined as: 
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Note that (17) is similar to the controller presented in 
[4], the difference resides in the definition of H2. Here we 
have: 
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Applying (17) to (14) we obtain:  
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This controller is separated in two parts: 
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Where the first part W  is the nominal controller and 
the second part WΔ is called the robust control term. 
Tracking error is given by xxd −=ε  where dx  is the 
desired position of the cart.  

The sliding surface is given by ελε ⋅+= &s  where λ  is 
a positive constant. The nominal controller term is chosen 
as: 

ε⋅+ε⋅+= pdd KKxW &&&  (21) 

Where  and  are two positive constants that 
define the settling time and the overshoot of the closed 
loop system. Robust controller term is a sliding mode 
controller and is defined as: 

dK pK

s
s

W ⋅
α+

ρ
=Δ  (22) 

Where ρ  and α  are two positive constants. Parameter 
ρ  must be rather large to allow the stability of the 
controller and so that α  allows limiting the chattering 
phenomena. Using Lyapounov method, it can be proved 
that this controller is globally exponentially stable. 

The desired position of the cart and its derivatives 
, ,  are to be chosen to define the 

trajectory of the cart.  
( )txd ( )txd& ( )txd&&

IV. DESIGN OF AN ADAPTIVE CONTROLLER 
In sliding mode controller, the dry friction is not taken 

in account, which could bring some static errors. In the 
design of the adaptive controller, the dry friction is 
considered as one part of the controller.  

In the existing theories such as [4], adaptive controller 
is mostly SISO (single input single output) systems. But 
the system MACHA, has one input (force F2) and two 
outputs ( and ). Thus the controller is structured 
in two parts. The first (Cont_c) contains the compensation 
of friction in point A, and the second (Cont_b) contains 

the compensation of friction between the beam and the 
cart: see fig 3. 

)t(θ )t(x

The goal is to control the cart position, so the first part 
which controls the position gives the reference to the 
second part. 

 
Figure 3.  Two controllers 

The height of the beam at the point B is )cos(dy θ= . 
Let dyye −=  the error. Then we obtain: eyy dr ⋅−= λ&& . 
The dynamic error is defined by: eer ⋅+= λ& . The 
internal part (Cont_b) of the adaptive controller is then 
given as: 
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References ( )tyd , ( )tyd& , , are to be selected to 
define the trajectory of the cart. Parameters

( )tyd&&

λ , ,  
have to be chosen to define the closed loop performances. 

 represents the system uncertainty: we have chosen, 

bk1 ibk

rbu
)rsgn(ku brb ⋅= 2 where is a constant greater than 1. bk2

P)y(SF̂ T
b_fric ⋅= &  is used to compensate the friction.  

Parameter P , describing the dry friction of friction, is 

adapted by a positive diagonal matrix  using:  bΓ

rSP̂ T
b ⋅⋅= Γ&                (24) 

This is the adaptive part of this controller. For the cart, 
the controller is obtained by a similar way: 
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 Using Lyapounov method, it has been shown [4] that 
this controller is globally exponentially stable. 

V. SIMULATIONS 
Simulations are conducted with the dynamics model 

elaborated in part II including the dry friction. The 
sampling time is chosen as Ts=10 ms and ODE 45 
(Matlab) method is used to simulate the two controllers. In 
order to apply the reference  gradually we chose a 
step function filtered by first order filter of time-constant 
1.5 s.  

( )txd

Cont_c Cont_b Macha 
F2 

x

xr
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For the sliding mode controller, the parameters are 
chosen as: , , , 25 −= sK p

110 −= s.Kd
110 −= sλ 520.=ρ  

and 50.=α . Initial cart position is the middle of the 
beam, which is horizontal. Initial cart velocity and initial 
angular velocity of the beam are zero. The cart has to 
move 0.8 m towards the right. During this evolution, force 
input F2 has to be less than 350 N. Because the cart is not 
actuated, the desired position can be reached by 
successive rotational movements of the beam. 

In fig 4, time evolution of the cart position and the 
reference are displayed. An excellent position tracking can 
be observed. The invisible static error (3 mm) remains 
insignificant. So that the cart reaches its desired position, 
the beam must have the appropriate behavior. Fig 5 shows 
beam rotations. A maximum value of 0.17 rad is 
acceptable because the limit was fixed at 0.5 rad. When 
the cart is in the final desired position, the beam returns to 
its initial horizontal position. Time evolution of the 
exerted force (F2) by the drive mechanism is displayed in 
fig 6. This force compensates the weight of the beam and 
the changing moment of the cart, caused by its changing 
position and also generates the desired movement of the 
beam. It reaches a maximum value of 200 N allowing the 
maximal angular displacement of the beam. 

 
Figure 4.  Simulation of the cart behavior (Sliding mode) 

 
Figure 5.  Simulation of the beam angle (Sliding mode) 

For the adaptive controller (23, 25), the parameters 
selected are given as follow: 

For the beam: ,  ,  ,  4801 =bk 0=ibk 22 =bk 10=λ  

For the cart: ,  ,  ,  21 =ck 0=ick 102 .k c = 10.=λ  

 
Figure 6.  Simulation of the input force (Sliding mode) 
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Because the adaptive controller needs varying 
commands to achieve the process of adaptation. The input 
for this controller is different from the sliding mode 
controller. 

Fig 7 shows input output variables using two adaptive 
controllers. We observe an excellent position tracking 
both in cart position and in beam position with zero static 
error. 
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Figure 7.  Simulation of the cart behavior (Adaptive) 

VI. EXPERIMENTS 
The experiment for the sliding mode controller is 

conducted with the initial cart position x_ini = 0.22 m, and 
with the reference step of magnitude 1 m. 

In fig 8 the cart trajectory is displayed. A static error of 
0.015 m is observed after 35 s, which also corresponds to 
fig 9, where the beam is near the horizontal position. In 
fact the cart does not move anymore because of the static 
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friction, which is a significant problem for little 
movements.  

 
Figure 8.  Cart position (Sliding)  

 
Figure 9.  Beam angle (Sliding) 

Figure 9 shows the chattering phenomena which is 
important when the cart is stuck on the beam. To reduce 
steady state error, we can increase the value of ρ , which 
increases the value of WΔ  (the robust control input term). 
But, increasing ρ , the chattering phenomena increases 
and the process could present non acceptable vibrations. 
Notice that this controller is quite robust because we know 
that dry friction is not constant and that some phenomena 
(like elasticity of belt for example) is not taken into 
account. To improve the performances, a variable 
parameter ρ  has been experimented. Here we use: 

( )ε⋅+ε⋅+⋅−ρ=ρ 321 2 aaqamax &&  (26) 

When the cart is near the reference position, the value 
of ρ  is ρ max=0.78 and the value of ρ  is decreasing 
when the cart moves away from the middle of the beam. 
Note: ρ  is always positive, thus stability is not modified. 

In fig 10, the reference step of magnitude 1 m is applied 
with initial position 0.22m. As we can see, final value is 
improved: static error is less than 0.005 m and beam 
rotations are quite acceptable. 

In fig 11, an impulse disturbance is applied at time t=5s, 
when the cart is in the middle of the beam. The controller 
tries to stabilize the cart in the initial position. Thus, the 

beam rotates many times and after 10 s the cart reaches 
the initial position. At time t = 37 s, an opposite impulse is 
applied and the same conclusions can be done. 

 
Figure 10.  Step response with variation of ρ  (Sliding) 

 
Figure 11.  Disturbance rejection (Sliding) 

Adaptive controller experiment is based on the 
hypothesis that the adaptation efficiency depends on the 
frequency of control modification. So the experiment is 
done by modify the input process every 5-10 seconds.  
The modification is done in the real time with an interface 
realized with carte dSPACE . 

 
Figure 12.  Cart position  (Adaptive)  
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In fig 12 the trajectory of the cart is displayed. The cart 
position follows the reference position very quickly and 
without steady state error. Vibrations could be observed. 
This would be due to the sensitivity of the adaptation and 
to the presence of noise on the sensors. 

In fig 13, the trajectory of beam is displayed, great 
vibration is observed, but this does not exceed the limit of 
the beam. In this figure, position of point B (beam 
extremity) and reference of this position are displayed. 
Here, the noise is more important and the extremity B is 
moving up and down very quickly. It’s a little difficult to 
select the two Γ matrices which are very sensitive of 
noise. 

Fig. 14 gives the evolution of stiction coefficient (fs) 
for the dry friction relative to the cart moving on the 
beam. The coefficient is nearly constant but is the most 
influent to the steady state error of the cart position (fig 
12). 

VII. CONCLUSION 
Control of an under actuated machine is the source of 

many difficulties. A sliding mode controller and an 
adaptive controller have to be designed and implemented 
on the plant. The experimental results of sliding mode 
controller obtained on the actual plant are very near to the 
results generated by simulation. This means that the model 
was quite reliable. Steady state error is due to static 
friction and friction appears to be more complicated than 
the way it was modeled. The static error can be reduced 
by modifying the sliding control parameters but the risk is 
to observe very important vibrations. A compromise has 
to be made.  

An adaptive controller with the compensation of dry 
friction has a zero steady state error both in simulation and 
experiment. This means an adaptive controller is more 
reliable in the important dry friction case. However, the 
choice of Γ  matrices is very difficult and many 
simulations and experiments have to be done. One 
advantage of this controller is that we can use it to detect 
dry friction modifications: it is a way to detect faults on 
this process. 

 

This work could be extended to the whole system in 
which point A is moving up and down. In this case, the 
system has two inputs and the controller is more complex. 

Another work to do is to use a dynamic model of dry 
friction and to use it to make fault detection.  
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