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Abstract
Compared with the first flexure mode, higher resonant modes of the microcantilever-based
mass sensor promise enhanced sensitivities in bio/chemical mass detection due to higher
quality factors. Therefore, the first torsional mode is employed in our research for improved
resolution of mass detection. Aiming at accurate characterization of the first torsional mode
and further detection of the multi-mass attached to the microcantilevers, a model based on the
Rayleigh–Ritz method, considering the attaching positions of the micro/nanoobjects adhered
to the microcantilever, is presented. A ragweed pollen, as a target mass, was located at
different positions on a commercial microcantilever for the contrasting experiments of the first
and second flexures and the first torsional modes of the ‘cantilever–object’ system in air.
Experimental results show that the mass sensitivity of the first torsional mode is an order higher
than that of the first bending mode within the realm of existing commercial microcantilevers.
The proposed model was further validated by the multi-mass detection results.
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1. Introduction

Microcantilevers, introduced as nano-probes into the atomic
force microscope (AFM) more than two decades ago [1], have
been used for a wide variety of applications in bio/chemical
detection. One particular kind of application is high-sensitivity
mass detection in the dynamic mode by measuring the
microcantilevers’ resonant frequency shift before and after the
load of the additional mass, and is therefore called a cantilever-
based mass sensor.

An early application of the cantilever-based mass
detection method was the spring constant calibration of the
AFM cantilever by measuring its resonant frequency shift
due to a known small mass attached to the free end of the
cantilever [2]. In contrast with the static method, utilizing
the dynamic mode of the microcantilever one can obtain
higher sensitivity. Moreover, the cantilever-based mass sensor
has abilities to detect various materials in the biological and
chemical domains, such as chemical vapors [3], and to detect

molecules [4]. Gradually, the cantilever-based mass sensor
has been started to be widely used as a significant scheme
for small mass detection. A simple linear electromechanical
model of an electrostatic-driven nano-cantilever demonstrated
the theoretical sensitivity of the mass detection on the attogram
scale [5]. In order to enhance the sensitivity of the mass
detection, several cantilevers were fabricated in the nanometer
scale using silicon microfabrication technology, which
provided promising sensitivity from femtogram to zeptogram
[6–12]. The highly sensitive and easily implemented
micro/nano-cantilevers were thus widely used in the biological
area, including the detection of DNA, virus and cells
[13–16]. By measuring the frequency shift and bending of
microcantilevers, novel designs for gas and liquid sensing
were presented, which can be used to detect mass difference
as well as viscosity changes [17, 18]. As an extremely
sensitive method, Anderson or vibration localization was used
in coupled microcantilevers to detect the mass of a target
analyte [19]. In [20], a dynamic method based on the
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Figure 1. The geometric model of the microcantilever.

Rayleigh–Ritz method was introduced for mass detection and
manipulation using the microcantilever. Even the popular
nanomaterial—carbon nanotube—was also employed in this
hot topic as a nanocantilever toward zeptogram detection [21].

In order to make the cantilever-based mass sensor
have ultra-sensitivity within the detection of a single small
molecule, besides reducing the feature sizes and increasing
the resonant frequencies of the cantilever, higher resonant
modes of the cantilever were investigated which have enhanced
sensitivities [22, 23]. A resolution of tens of femtogram mass
sensing in air was obtained using the second flexural mode of
a piezoresistive cantilever [24].

In the AFM application, the first torsional mode of the
cantilever has many advantages, in which a noticeable property
of torsional resonance is that it is extremely sensitive to the
mass at the end of the tip [25]. Therefore, in this paper,
motivated by the need for high-sensitivity mass detection of
the cantilever-based mass sensor, the first torsional mode is
employed to achieve higher sensitivity of mass detection other
than the conventional flexural modes. For the modeling of
vibration modes of the cantilever, it is found that only a few
researchers paid attention to the attaching positions of the
micro- and nano-objects. In fact, unless the mass is accurately
fabricated on a special position on the cantilever, other
mass loading methods such as mass absorbing, accurately
placing and distributing will undoubtedly bring positioning
errors, in particular directly distributing the mass using
micromanipulation, in which adhesion forces play a significant
role in physical interactions between micro/nano-objects and
the environment or the manipulator [26–28]. Therefore,
in this paper, a ‘cantilever–object’ system model, based
on the Rayleigh–Ritz method, considering the attaching
position is proposed. In this method, all the dimensions
of the microcantilever as well as the attaching position of
micro/nano-objects are included in the same model. Once
the attaching positions of micro/nano-objects and the first
torsional resonant frequency of the cantilever are known,
the attaching mass of micro/nano-objects can be precisely
determined.

2. Theories and models

2.1. Model of the cantilever

As shown in figure 1, a microcantilever with a rectangular
section is fixed at one end and free at the other end, assumed
to deform in a linear elastic range. Dimensions L, w and

h are the length, width and thickness of the microcantilever,
respectively. The coordinates are defined as follows: the origin
is located at the center of the cross section of the built-in end,
the x-axis is along its length, and the z-axis and y-axis are
along its thickness and width, respectively. The motion of the
torsional modes of the microcantilever is a function of x [29]:

GJ
∂2θ(x, t)

∂x2
= ρIp

∂2θ(x, t)

∂t2
+ c

∂θ(x, t)

∂t
, (1)

where θ (x, t) is the rotation angle of the cantilever along its x-
axis, G is the shear modulus, ρ is the density of the cantilever,
c is the coefficient of viscous damping, the polar area moment
of inertia Ip = (wh3 +w3h)/12 and J is the torsional constant.
For the rectangular cantilever, J can be obtained by [30]

J ≈ 1
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The nth torsional resonant frequency is obtained by

ω = (2n − 1)π

2L

√
GJ

ρIp

, n = 1, 2, . . . . (3)

2.2. The Rayleigh–Ritz method

Hundreds of papers have been published that used a method,
termed the ‘Rayleigh–Ritz method’, to resolve natural
frequencies of continuum systems. Although it was claimed
that Rayleigh’s name should not be attached to the Ritz method,
that is, the ‘Rayleigh–Ritz method’ is an improper designation
[31], the classic and perfect method will be employed to solve
the natural frequencies of the cantilever–mass system in our
research. In the Rayleigh method, the potential (U) and kinetic
(T) energies of the torsional system are considered to calculate
the natural frequency of the system. The maxima Umax and
Tmax are defined by

Umax = 1

2

∫ L

0
GJ

[
∂z(x)

∂x

]2

dx (4)

Tmax = 1

2
ω2

∫ L

0
ρIpz2(x) dx, (5)

where z(x) is the mode shape of the cantilever. In this method,
by assuming the function of the mode shape z(x) and setting
the maximum potential energy Umax and kinetic energy Tmax in
a cycle of vibration equal to each other, the natural frequency
ω of a continuum system can be determined by

ω2 =
∫ L

0 GJ
[

∂z(x)

∂x

]2
dx∫ L

0 ρIP z2(x) dx
. (6)

Obviously, the calculation accuracy of the resonant frequency
has a strong dependence on the accuracy of the assumed
function, i.e. how closely the assumed mode shape fits the
exact one, especially for a system with multi-subsystems. In
Ritz’s method, a displacement function on x is assumed in
terms of a series of displacement functions with undetermined
coefficients that meet the geometric boundary conditions of
the vibration. Thus, the mode function is defined by

v(x) =
n∑

i=0

aiϕi(x), (7)
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Figure 2. The geometric model of the ‘cantilever–object’ system.
Three microspheres m1, m2 and m3 attached to the cantilever have
coordinates of (lx1, ly1), (lx2, ly2) and (lx3, ly3), respectively.

where the shape function φi(x) may be defined as polynomials
or trigonometric functions and ai are arbitrary coefficients.

From (6) and (7), a similar equation for the natural
frequency can be given by

ω2 = {a}T [K]{a}
{a}T [M]{a} = K

M
, (8)

where {a}T = {a1, a2, . . . , an}, K and M are stiffness and
mass matrices, respectively. According to (8), the solution of
the natural frequency is given by

[K − ω2M ]{a} = 0. (9)

Therefore, for the arbitrary coefficients {a}, the solution is

det(K − ω2M ) = 0. (10)

This is the famous Rayleigh–Ritz method for the calculation
of the natural frequency of the continuum systems. For a
complex system consisting of multi-subsystems, for example
if a spring bearing or mass adhered to the vibrating continuum
systems, their additional potential or kinetic energies should
be added to the whole system. Therefore, in the ‘cantilever–
mass’ system, after adding the kinetic energy of the mass to
the whole system, the natural frequency of the whole system
can be accurately calculated.

2.3. Analysis of the torsional vibration

The ‘cantilever–object’ system is modeled in figure 2. The
torsional axis is along the x-axis and through the center of
the cross section of the built-in end. In the model of the
first torsional mode, three micro-objects, assumed to have the
same mass m, attached to locations (lxk, lyk), and two degrees
of freedom t1 and t2 that are vertical to the x-axis, are assigned
to the whole system. Thus, the shape function of the first
torsional mode can be defined as

zt (x) = t1ψ1(x) + t2ψ2(x), (11)

where the functions ψ1(x) and ψ2(x), presenting the torsional
angle of the cantilever, are defined as x and x2, respectively.
t1 and t2 are two corresponding coefficients. Therefore,
the maximum potential (Umax) and maximum kinetic (Tmax)
energies of the beam in the first torsional mode are given by

Umax = 1

2
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Thus, the factors of the matrices K and M for the torsional
mode are obtained by

kij = GJ

∫ L

0

∂ψi(x)

∂x
· ∂ψj (x)

∂x
dx (14)

mij = ρIp

∫ L

0
ψi(x) · ψj(x) dx. (15)

For the attaching objects, the corresponding elements of the
mass matrix are given by

mijobject =
3∑

n=1

Jmkψi(x) · ψj(x), (16)

where k is the number of the three micro/nano-objects and Jm

is the inertia moment of mass. For a microsphere, Jm can be
given by

Jm = 2

5
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[
l2
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(
h

2
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)2
]

, (17)

where r is the radius of the attaching microsphere. Therefore,
under the given coordinate system and [t1, t2], the mass
matrix M and the stiffness matrix K of the whole system
are determined as
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⎣ 1
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2
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K =
[

GJL GJL2

GJL2 4
3GJL3

]
. (19)

From (10), a solution involves parameters of inertia moment
Jmk; the natural resonant frequency ω of the ‘cantilever–object’
system is obtained by

f (lxk, Jmk, ω) = 0 (k = 1, 2, . . . , N). (20)

Note that in (20), there are three variables. lxk is the longitude
position of microspheres, and the inertia moment of mass Jmk is
determined by the mass and the position of the object from the
torsional axis. Therefore, if we know the resonant frequency
of the ‘cantilever–object’ system and the attaching positions
of microspheres, the mass can be calculated.

3. Experiments and results

3.1. Set-up of the cantilever-based mass sensor

The mass sensor used in our experiments mainly consists of a
silicon microcantilever, a piezoceramic and a laser deflection
measuring system. The piezoceramic, as a vibration actuator,
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has dimensions of 1 mm in thickness, 5 mm in width and 8 mm
in length. Experimental results indicate that this piezoceramic
has a linear relation between voltage input and displacement
output, from 0 to 60 nm under the input between 0 and 300 V.
A signal generator is used to actuate the piezoceramic, which
can produce asinusoidal waves ranging from 0 to 20 V, with the
bandwidth ranging from 1 to 3 MHz and resolutions of 1 Hz
from 0 to 10 kHz, 10 Hz below 1 MHz, 100 Hz within
the range of 1–3 MHz. An optical microscope (Olympus
BX50WI with 20× objective, providing a resolution of
0.55 µm pixel−1) is employed to measure the attaching
positions of the micro/nano-objects and to determine the
dimensions of the cantilever.

3.2. Calibration of the cantilever

The spring constant of microcantilevers should be accurately
determined. Many methods, including dynamic methods
(forced and thermal oscillation), static loading and FEA
methods, were used to calibrate the stiffness of the cantilever
[32]. During the calibration, although dimensions of the
cantilever were provided by the manufacturer, the optical
microscope was used to measure the cantilever’s dimensions.
In our experiment, the forced oscillation method was employed
to determine the key parameter h of the cantilever based on its
natural frequency.

As shown in figure 3(a), the experimental cantilever has
a wedge-shaped end. Therefore, considering the effect of the
wedge-shaped end of the cantilever, (14) and (15) should be
modified for the first torsional model:

kij = GJ

∫ L−lw

0

∂2ψi(x)

∂x2
· ∂2ψj(x)

∂x2
dx

+ GJ

∫ L

L−lw

(L − x)

lw
· ∂2ψi(x)

∂x2
· ∂2ψj(x)

∂x2
dx (21)

mij = ρIp

∫ L−lw

0
ψi(x) · ψj(x) dx

+ ρIp

∫ L

L−lw

(L − x)

lw
· ψi(x) · ψj(x) dx, (22)

where lw is the height of the wedge tip on the x-axis. If the first
torsional frequency of the cantilever is known, the thickness
of the cantilever can be calculated by the modified (20) (set
Jm = 0). In the experiments, dimensions of the cantilever
were measured as 596.5 µm in length, 141.5 µm in width
and lw = 68.4 µm under the optical microscope. Finally, the
spring constant was characterized as 20.15 N m−1.

3.3. Mass sensitivity of the first three modes

The resonant frequencies of the microcantilever were detected
by a laser deflection measuring system, which mainly consists
of a laser, a quadrant photodiode and some other components
to build the light path. Each of the first three modes was
examined separately. Indeed, it is possible to carefully locate
the laser spot at the center of the free end of the microcantilever
to maximize the contribution of the torsional mode [33]. After
carefully preparing the experimental system, the first step

(a)

(b)

(c )

(d )

 (kHz)

Figure 3. (a) An optical image of the microcantilever with an
attached ragweed pollen. (b) Frequency shift of the first flexural
mode. (c) Frequency shift of the second flexural mode.
(d) Frequency shift of the first torsional mode.

was to characterize the natural frequencies of the cantilever
by performing a frequency sweep from 0 to 300 kHz with
an interval of 10 Hz; then a grain of ragweed pollen with
a diameter of 20–20.5 µm was released on the free end of
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Table 1. Mass detection results using the first three modes.

1st 2nd 1st
Descriptions flexural flexural torsional Average

Mass (10−12 kg) 3.795 3.879 3.848 3.841

Table 2. The mass detection of the ragweed pollen adhered to the
cantilever at different positions.

Positions 1st torsional freq. shift Gross mass
Sequences (x, y) (µm) (kHz) (10−12 kg)

1 (491, 68) 1.81 3.829
2 (536, 17) 0.12 2.984
3 (530, −38) 0.61 3.816
4 (519, −77) 2.40 3.848

the microcantilever (shown in figure 3(a)). In order to get
high sensitivity of the mass detection, the ragweed pollen was
purposefully located near the edge of the microcantilever on
the free end. Under an optical microscope, the position of the
ragweed pollen was measured as (519, −77) (µm) in the given
coordinate as shown in figure 2. When the ragweed pollen was
placed, the experiment was rerun to determine the first three
resonant frequencies of the ‘cantilever–object’ system. During
the sweeping, the first three resonant frequencies without
and with this added mass were recorded. In figures 3(b)–
(d), we can get that the frequency shifts of these first three
modes are 140 Hz, 700 Hz and 2.4 kHz, respectively, which
indicate that the first torsional mode has relatively the highest
sensitivity of mass detection. The second flexural mode also
has a high sensitivity due to the smaller effective mass of the
microcantilever than the first bending mode [24]. As shown
in table 2, using these three modes, an average mass of the
ragweed pollen was measured as 3.838 × 10−12 kg under
a humidity of 60%, which is quite in accordance with the
previous experimental result [34].

In the experiments, the natural frequency of the
‘cantilever–object’ system was measured using asinusoidal
excitation with a very low magnitude to guarantee the weak
adhesion force between the cantilever and the ragweed pollen
to be enough to hold the ragweed pollen in such high frequency
(the first torsional resonant frequency of the cantilever is
284.72 kHz). The experimental results show that the first
torsional resonant frequency of the system strongly depends on
the attaching position of the microsphere. In order to validate
the relationship among the resonant frequencies, attaching
positions and mass of the microsphere, as shown in figure 4,
the ragweed pollen was located at four different positions
along the y-axis. From (20), because the natural frequency is
determined by the positions on the x- and y-axes as well as the
mass of the ragweed pollen, this problem is resolved as follows.
Initially, the microscopic vision was employed to measure the
attaching position of the ragweed pollen. Secondly, the first
torsional resonant frequency of the ‘cantilever–object’ system
was detected by the frequency sweep. Subsequently, the mass
of the ragweed pollen was easily calculated from (20). The
corresponding experimental results are shown in table 2. Note
that the frequency shift, related to the detection sensitivity

Figure 4. The ragweed pollen is placed at four different positions
along the transversal coordinate of the microcantilever.

Figure 5. Four ragweed pollens adhered to the cantilever at
different positions. The positions are measured by microscopic
vision with a resolution of 0.55 µm pixel−1.

Table 3. Results of the multi-mass detection.

Ragweed Positions 1st torsional freq. Mass
pollens (lxk, lyk) (µm) shift (kHz) (10−12 kg)

1 (461, 55) 1.82 3.905
2 (509, 10)
3 (532, 10)
4 (540, −28)

of the mass detection, will be decreased when the attaching
position of the ragweed pollen approaches the torsional axis
of the microcantilever due to its decreasing moment of inertia,
which is in accordance with the analysis of the torsional mode
of the cantilever-based mass sensor. Therefore, in order to
get high sensitivity of the mass detection in the first torsional
mode, the mass should be placed near the edge of the cantilever.

3.4. Multi-mass detection

In order to further verify the proposed mode, as shown in
figure 5, four ragweed pollens were released on the free end
of the cantilever with different positions that were measured
under the optical microscope. As shown in table 3, an average
mass 3.905 × 10−12 kg was detected by the proposed method,
which is a little higher than the real mass of the ragweed
pollen. Two factors contribute to this error; the first one is that
the diameter difference of the ragweed pollen results in errors
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in the mass detection, and the other is that two ragweed pollens
m2 and m3 are near the torsional axis of the microcantilever,
reducing the sensitivity of the mass detection. However, in
contrast with the conventional flexural mode, the first torsional
mode has much higher mass sensitivity when the mass is placed
near the edge of the free end of the microcantilever, which
promises the possibility of using ordinary microcantilevers for
higher sensitivity in bio/chemical detection.

4. Conclusion

In order to achieve higher sensitivity mass detection, a
model for the first torsional mode of the ‘cantilever–object’
system based on the Rayleigh–Ritz theory was developed.
A ragweed pollen was released on the edge of the free end
of the microcantilever to purposefully compare the mass
sensitivities of the first three modes of the microcantilever.
The experimental results show that the mass sensitivity of the
first torsional mode is an order of magnitude greater than the
first flexure mode, and much higher than that of the second
resonant mode. In order to verify the effect of positions
on the sensitivity of the first torsional mode, the ragweed
pollen was deliberately placed at four different positions
on the transverse axis near the cantilever free end and the
positions were measured by highly precise microscopic vision.
The experimental results indicated that when the ragweed
pollen nears the edge of the cantilever, higher sensitivity
of mass detection could be achieved. In the multi-mass
detection, four ragweed pollens were released on the cantilever
and the mass was also accurately detected. In conclusion,
using the first torsional resonant mode of the microcantilever,
one can achieve enhanced mass sensitivity with commercial
microcantilevers.
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